1
|
Shi JJ, Chen RY, Liu YJ, Li CY, Yu J, Tu FY, Sheng JX, Lu JF, Zhang LL, Yang GJ, Chen J. Unraveling the role of ubiquitin-conjugating enzyme 5 (UBC5) in disease pathogenesis: A comprehensive review. Cell Signal 2024; 124:111376. [PMID: 39236836 DOI: 10.1016/j.cellsig.2024.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei-Yang Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Xiang Sheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Lv P, Liu J, Liu X. The role of ubiquitin-conjugating enzyme in the process of spermatogenesis. Reprod Biol Endocrinol 2024; 22:110. [PMID: 39198846 PMCID: PMC11351103 DOI: 10.1186/s12958-024-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The ubiquitination is crucial for controlling cellular homeostasis and protein modification, in which ubiquitin-conjugating enzyme (E2) acts as the central player in the ubiquitination system. Ubiquitin-conjugating enzymes, which have special domains that catalyse substrates, have sequence discrepancies and modulate various pathophysiological processes in different cells of multiple organisms. E2s take part in the mitosis of primordial germ cells, meiosis of spermatocytes and the formation of mature haploid spermatids to maintain normal male fertility. In this review, we summarize the various types of E2s and their functions during distinct stages of spermatogenesis.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Li X, Rasul A, Sharif F, Hassan M. PIAS family in cancer: from basic mechanisms to clinical applications. Front Oncol 2024; 14:1376633. [PMID: 38590645 PMCID: PMC10999569 DOI: 10.3389/fonc.2024.1376633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Protein inhibitors of activated STATs (PIAS) are proteins for cytokine signaling that activate activator-mediated gene transcription. These proteins, as versatile cellular regulators, have been described as regulators of approximately 60 proteins. Dysregulation of PIAS is associated with inappropriate gene expression that promotes oncogenic signaling in multiple cancers. Multiple lines of evidence have revealed that PIAS family members show modulated expressions in cancer cells. Most frequently reported PIAS family members in cancer development are PIAS1 and PIAS3. SUMOylation as post-translational modifier regulates several cellular machineries. PIAS proteins as SUMO E3 ligase factor promotes SUMOylation of transcription factors tangled cancer cells for survival, proliferation, and differentiation. Attenuated PIAS-mediated SUMOylation mechanism is involved in tumorigenesis. This review article provides the PIAS/SUMO role in the modulation of transcriptional factor control, provides brief update on their antagonistic function in different cancer types with particular focus on PIAS proteins as a bonafide therapeutic target to inhibit STAT pathway in cancers, and summarizes natural activators that may have the ability to cure cancer.
Collapse
Affiliation(s)
- Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farzana Sharif
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Zhao S, Wang Q, Zhang X, Ma B, Shi Y, Yin Y, Kong W, Zhang W, Li J, Yang H. MARCH5-mediated downregulation of ACC2 promotes fatty acid oxidation and tumor progression in ovarian cancer. Free Radic Biol Med 2024; 212:464-476. [PMID: 38211832 DOI: 10.1016/j.freeradbiomed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Lipid metabolic reprogramming has been recognized as a hallmark of human cancer. Acetyl-CoA Carboxylases (ACCs) are key rate-limiting enzymes involved in fatty acid metabolism regulation by catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. Previously, most studies focused on the role of ACC1 in fatty acid metabolism in cancer, while the function of ACC2 remains largely uncharacterized in human cancers, especially in ovarian cancer (OC). Here, we show that ACC2 was significantly downregulated in cancerous tissue of OC, and the downregulation of ACC2 is closely associated with lager tumor size, metastases and worse prognosis in OC patients. Downregulation of ACC2 promoted proliferation and metastasis of OC both in vitro and in vivo by enhancing FAO. Notably, mitochondria-associated ubiquitin ligase (MARCH5) was identified to interact with and downregulate ACC2 by ubiquitination and degradation in OC. Moreover, ACC2 downregulation-enhanced FAO contributed to the progression of OC promoted by MARCH5. In conclusion, our findings demonstrate that MARCH5-mediated downregulation of ACC2 promotes FAO and tumorigenesis in OC, suggesting MARCH5-ACC2 axis as a potent candidate for the treatment and prevention of OC.
Collapse
Affiliation(s)
- Shuhua Zhao
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qingqiang Wang
- General Department, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Boyi Ma
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yuan Shi
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yadong Yin
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weina Kong
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Jibin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Hong Yang
- Department of Gynaecology and Obstetrics, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
5
|
Peng N, Liu J, Hai S, Liu Y, Zhao H, Liu W. Role of Post-Translational Modifications in Colorectal Cancer Metastasis. Cancers (Basel) 2024; 16:652. [PMID: 38339403 PMCID: PMC10854713 DOI: 10.3390/cancers16030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. CRC metastasis is a multi-step process with various factors involved, including genetic and epigenetic regulations, which turn out to be a serious threat to CRC patients. Post-translational modifications (PTMs) of proteins involve the addition of chemical groups, sugars, or proteins to specific residues, which fine-tunes a protein's stability, localization, or interactions to orchestrate complicated biological processes. An increasing number of recent studies suggest that dysregulation of PTMs, such as phosphorylation, ubiquitination, and glycosylation, play pivotal roles in the CRC metastasis cascade. Here, we summarized recent advances in the role of post-translational modifications in diverse aspects of CRC metastasis and its detailed molecular mechanisms. Moreover, advances in drugs targeting PTMs and their cooperation with other anti-cancer drugs, which might provide novel targets for CRC treatment and improve therapeutic efficacy, were also discussed.
Collapse
Affiliation(s)
- Na Peng
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Shuangshuang Hai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Yihong Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Haibo Zhao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Weixin Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| |
Collapse
|
6
|
Gong Y, Dai L. Decoding Ubiquitin Modifications by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:1-18. [PMID: 39546132 DOI: 10.1007/978-981-97-7288-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a critical and widely distributed post-translational modification (PTM) involved in the regulation of almost every cellular process and pathway in cells, such as proteostasis, DNA repair, trafficking, and immunity. Mass spectrometry (MS)-based proteomics is a robust tool to decode the complexity of ubiquitin networks by disclosing the proteome-wide ubiquitination sites, the length, linkage and topology of ubiquitin chains, the chemical modification of ubiquitin chains, and the crosstalk between ubiquitination and other PTMs. In this chapter, we discuss the application of MS in the interpretation of the ubiquitin code.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Yang P, Yang X, Wang D, Yang H, Li Z, Zhang C, Zhang S, Zhu J, Li X, Su P, Zhuang T. PSMD14 stabilizes estrogen signaling and facilitates breast cancer progression via deubiquitinating ERα. Oncogene 2024; 43:248-264. [PMID: 38017133 PMCID: PMC10798890 DOI: 10.1038/s41388-023-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
The over-activation of ERα signaling is regarded as the major driver for luminal breast cancers, which could be effective controlled via selective estrogen receptor modulators (SERM), such as tamoxifen. The endocrine resistance is still a challenge for breast cancer treatment, while recently studies implicate the post-translational modification on ERα play important roles in endocrine resistance. The stability of ERα protein and ERα transcriptome are subject to a balance between E3 ubiquitin ligases and deubiquitinases. Through deubiquitinases siRNA library screening, we discover PSMD14 as a critical deubiquitinase for ERα signaling and breast cancer progression. PSMD14 could facilitate breast cancer progression through ERα signaling in vitro and in vivo, while pharmaceutical inhibition of PSMD14 via Thiolutin could block the tumorigenesis in breast cancer. In endocrine resistant models, PSMD14 inhibition could de-stabilize the resistant form of ERα (Y537S) and restore tamoxifen sensitivity. Molecular studies reveal that PSMD14 could inhibition K48-linked poly-ubiquitination on ERα, facilitate ERα transcriptome. Interestingly, ChIP assay shows that ERα could bind to the promoter region of PSMD14 and facilitate its gene transcription, which indicates PSMD14 is both the upstream modulator and downstream target for ERα signaling in breast cancer. In general, we identified a novel positive feedback loop between PSMD14 and ERα signaling in breast cancer progression, while blockade of PSMD14 could be a plausible strategy for luminal breast cancer.
Collapse
Affiliation(s)
- Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Xiao Yang
- Department of Laboratory Medicine, Xinxiang Central Hospital, Xinxiang, 453003, Henan Province, PR China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China
| | - Dehai Wang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China.
| | - Xin Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China.
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
8
|
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Cells 2023; 13:29. [PMID: 38201233 PMCID: PMC10778545 DOI: 10.3390/cells13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Ubiquitination is a reversible post-translational modification based on the chemical addition of ubiquitin to proteins with regulatory effects on various signaling pathways. Ubiquitination can alter the molecular functions of tagged substrates with respect to protein turnover, biological activity, subcellular localization or protein-protein interaction. As a result, a wide variety of cellular processes are under ubiquitination-mediated control, contributing to the maintenance of cellular homeostasis. It follows that the dysregulation of ubiquitination reactions plays a relevant role in the pathogenic states of human diseases such as neurodegenerative diseases, immune-related pathologies and cancer. In recent decades, the enzymes of the ubiquitin-proteasome system (UPS), including E3 ubiquitin ligases and deubiquitinases (DUBs), have attracted attention as novel druggable targets for the development of new anticancer therapeutic approaches. This perspective article summarizes the peculiarities shared by the enzymes involved in the ubiquitination reaction which, when deregulated, can lead to tumorigenesis. Accordingly, an overview of the main pharmacological interventions based on targeting the UPS that are in clinical use or still in clinical trials is provided, also highlighting the limitations of the therapeutic efficacy of these approaches. Therefore, various attempts to circumvent drug resistance and side effects as well as UPS-related emerging technologies in anticancer therapeutics are discussed.
Collapse
Affiliation(s)
- Daniela Spano
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
9
|
Yang Y, Luo Y, Yang C, Hu R, Qin X, Li C. TRIM25-mediated ubiquitination of G3BP1 regulates the proliferation and migration of human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194954. [PMID: 37302696 DOI: 10.1016/j.bbagrm.2023.194954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Neuroblastoma is one of the most severe malignant tumors and accounts for substantial cancer-related mortality in children. Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is highly expressed in various cancers and acts as an important biomarker of poor prognosis. The ablation of G3BP1 inhibited the proliferation and migration of human SHSY5Y cells. Because of its important role in neuroblastoma, the regulation of G3BP1 protein homeostasis was probed. TRIM25, which belongs to the tripartite motif (TRIM) family of proteins, was identified as an interacting partner for G3BP1 using the yeast two-hybrid (Y2H) method. TRIM25 mediates the ubiquitination of G3BP1 at multiple sites and stabilizes its protein level. Then, our study found that TRIM25 knockdown also inhibited the proliferation and migration of neuroblastoma cells. The TRIM25 and G3BP1 double knockdown SHSY5Y cell line was generated, and double knockdown cells exhibited lower proliferation and migration ability than cells with only TRIM25 or G3BP1 knockdown. Further study demonstrated that TRIM25 promotes the proliferation and migration of neuroblastoma cells in a G3BP1-dependent manner. Tumor xenograft assays indicated that the ablation of TRIM25 and G3BP1 synergistically suppressed the tumorigenicity of neuroblastoma cells in nude mice, and TRIM25 promoted the tumorigenicity of G3BP1 intact SHSY5Y cells but not G3BP1 knockout cells. Thus, TRIM25 and G3BP1, two oncogenic genes, are suggested as potential therapeutic targets for neuroblastoma.
Collapse
Affiliation(s)
- Yun Yang
- School of Medicine, Guizhou University, Guiyang 550025, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanyan Luo
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cong Yang
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Ronggui Hu
- School of Medicine, Guizhou University, Guiyang 550025, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Chuanyin Li
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| |
Collapse
|
10
|
Sheng Z, Cao X, Deng YN, Zhao X, Liang S. SUMOylation of AnxA6 facilitates EGFR-PKCα complex formation to suppress epithelial cancer growth. Cell Commun Signal 2023; 21:189. [PMID: 37528485 PMCID: PMC10391975 DOI: 10.1186/s12964-023-01217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The Annexin A6 (AnxA6) protein is known to inhibit the epidermal growth factor receptor (EGFR)-extracellular signal regulated kinase (ERK)1/2 signaling upon EGF stimulation. While the biochemical mechanism of AnxA6 inactivating phosphorylation of EGFR and ERK1/2 is not completely explored in cancer cells. METHODS Cells were transiently co-transfected with pFlag-AnxA6, pHA-UBC9 and pHis-SUMO1 plasmids to enrich the SUMOylated AnxA6 by immunoprecipitation, and the modification level of AnxA6 by SUMO1 was detected by Western blot against SUMO1 antibody. The SUMOylation level of AnxA6 was compared in response to chemical SUMOylation inhibitor treatment. AnxA6 SUMOylation sites were further identified by LC-MS/MS and amino acid site mutation validation. AnxA6 gene was silenced through AnxA6 targeting shRNA-containing pLKO.1 lentiviral transfection in HeLa cells, while AnxA6 gene was over-expressed within the Lenti-Vector carrying AnxA6 or mutant AnxA6K299R plasmid in A431 cells using lentiviral infections. Moreover, the mutant plasmid pGFP-EGFRT790M/L858R was constructed to test AnxA6 regulation on EGFR mutation-induced signal transduction. Moreover, cell proliferation, migration, and gefitinib chemotherapy sensitivity were evaluated in HeLa and A431 cells under AnxA6 konckdown or AnxA6 overexpression by CCK8, colony form and wound healing assays. And tumorigenicity in vivo was measured in epithelial cancer cells-xenografted nude mouse model. RESULTS AnxA6 was obviously modified by SUMO1 conjugation within Lys (K) residues, and the K299 was one key SUMOylation site of AnxA6 in epithelial cancer cells. Compared to the wild type AnxA6, AnxA6 knockdown and its SUMO site mutant AnxA6K299R showed less suppression of dephosphorylation of EGFR-ERK1/2 under EGF stimulation. The SUMOylated AnxA6 was prone to bind EGFR in response to EGF inducement, which facilitated EGFR-PKCα complex formation to decrease the EGF-induced phosphorylation of EGFR-ERK1/2 and cyclin D1 expression. Similarly, AnxA6 SUMOylation inhibited dephosphorylation of the mutant EGFR, thereby impeding EGFR mutation-involved signal transduction. Moreover, AnxA6 knockdown or the K299 mutant AnxA6K299R conferred AnxA6 inability to suppress tumor progression, resulting in drug resistance to gefitinib in epithelial cancer cells. And in epithelial cancer cells-xenografted nude mouse model, both the weight and size of tumors derived from AnxA6 knockdown or AnxA6K299R mutation-expressing cells were much greater than that of AnxA6-expressing cells. CONCLUSIONS Besides EGFR gene mutation, protein SUMOylation modification of EGFR-binding protein AnxA6 also functions pivotal roles in mediating epithelial cancer cell growth and gefitinib drug effect. Video Abstract.
Collapse
Affiliation(s)
- Zenghua Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, 610041, Chengdu, People's Republic of China
| | - Xu Cao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, 610041, Chengdu, People's Republic of China
| | - Ya-Nan Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, 610041, Chengdu, People's Republic of China
| | - Xinyu Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, 610041, Chengdu, People's Republic of China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17, Section 3 of Renmin South Road, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
11
|
Sanati M, Afshari AR, Ahmadi SS, Moallem SA, Sahebkar A. Modulation of the ubiquitin-proteasome system by phytochemicals: Therapeutic implications in malignancies with an emphasis on brain tumors. Biofactors 2023; 49:782-819. [PMID: 37162294 DOI: 10.1002/biof.1958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Regarding the multimechanistic nature of cancers, current chemo- or radiotherapies often fail to eradicate disease pathology, and frequent relapses or resistance to therapies occur. Brain malignancies, particularly glioblastomas, are difficult-to-treat cancers due to their highly malignant and multidimensional biology. Unfortunately, patients suffering from malignant tumors often experience poor prognoses and short survival periods. Thus far, significant efforts have been conducted to discover novel and more effective modalities. To that end, modulation of the ubiquitin-proteasome system (UPS) has attracted tremendous interest since it affects the homeostasis of proteins critically engaged in various cell functions, for example, cell metabolism, survival, proliferation, and differentiation. With their safe and multimodal actions, phytochemicals are among the promising therapeutic tools capable of turning the operation of various UPS elements. The present review, along with an updated outline of the role of UPS dysregulation in multiple cancers, provided a detailed discussion on the impact of phytochemicals on the UPS function in malignancies, especially brain tumors.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
- Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Adel Moallem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Ge Y, Zhao R, Li B, Xiao B, Zhou L, Zuo S. Aerobic glycolysis and tumor progression of hepatocellular carcinoma are mediated by ubiquitin of P53 K48-linked regulated by TRIM37. Exp Cell Res 2022; 421:113377. [PMID: 36252649 DOI: 10.1016/j.yexcr.2022.113377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common primary liver cancer in the world. In malignant liver cancer, the increase of aerobic glycolysis indicates that the possibility of tumorigenesis is greatly enhanced. TRIM37 is a member of the TRIM family of proteins that possesses E3 ubiquitin ligase activity and has been implicated in the occurrence and prognosis of many different tumors. However, the stability of P53 plays an important role in preventing tumorigenesis. The mechanism by which TRIM37 regulates the stability of P53 through ubiquitin in the progression of hepatocellular carcinoma is still unclear. MATERIALS AND METHODS Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the expression of mRNA and protein in HCC cells. Lactic acid production, glucose uptake, and ATP levels were measured by BioVision kit. The following were used to assess the in vitro function of TRIM37 in HCC cells: cell counting kit-8 (CCK-8), colony formation assay, cell migration and invasion assay, and flow cytometry. We observed the effect of TRIM37 on the growth of transplanted tumors in nude mice. Co-Immunoprecipitation (Co-IP) revealed a binding relationship between TRIM37 and P53. RESULTS The expression of TRIM37 in hepatocellular carcinoma (HCC) tissues was higher than that of normal tissues according to an analysis of The Cancer Genome Atlas (TCGA) database.Loss-of-function assays indicated that TRIM37 inhibited the proliferation, colony formation, migration, and invasion of liver cancer cells. The mechanism is as follows: TRIM37 interacts with the P53 protein to induce E3 ligase activity, ubiquitination, and degradation, further promoting the malignant characteristics of hepatocellular carcinoma, thus promoting the process of glycolysis. Genetic knockdown of P53 reversed the promoting function of TRIM37 on the growth and metastasis of hepatocellular carcinoma cells. CONCLUSIONS Our study showed that the TRIM37-P53 axis plays a role in the progression of liver cancer, and thus is a potential target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yuzhen Ge
- Clinical Medicine of Guizhou Medical University, Guiyang, Guizhou, China
| | - Rui Zhao
- Clinical Medicine of Guizhou Medical University, Guiyang, Guizhou, China; Department of Liver Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bo Li
- Clinical Medicine of Guizhou Medical University, Guiyang, Guizhou, China
| | - Benli Xiao
- Clinical Medicine of Guizhou Medical University, Guiyang, Guizhou, China
| | - Lei Zhou
- Clinical Medicine of Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Clinical Medicine of Guizhou Medical University, Guiyang, Guizhou, China; Department of Liver Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
13
|
Yang Z, Zhang S, Xia T, Fan Y, Shan Y, Zhang K, Xiong J, Gu M, You B. RNA Modifications Meet Tumors. Cancer Manag Res 2022; 14:3223-3243. [PMID: 36444355 PMCID: PMC9700476 DOI: 10.2147/cmar.s391067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 09/14/2023] Open
Abstract
RNA modifications occur through the whole process of gene expression regulation, including transcription, translation, and post-translational processes. They are closely associated with gene expression, RNA stability, and cell cycle. RNA modifications in tumor cells play a vital role in tumor development and metastasis, changes in the tumor microenvironment, drug resistance in tumors, construction of tumor cell-cell "internet", etc. Several types of RNA modifications have been identified to date and have various effects on the biological characteristics of different tumors. In this review, we discussed the function of RNA modifications, including N 6-methyladenine (m6A), 5-methylcytosine (m5C), N 7-methyladenosine (m7G), N 1-methyladenosine (m1A), pseudouridine (Ψ), and adenosine-to-inosine (A-to-I), in the microenvironment and therapy of solid and liquid tumors.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Siyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Tian Xia
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Yue Fan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Ying Shan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Kaiwen Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Jiayan Xiong
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Miao Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| | - Bo You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People’s Republic of China
| |
Collapse
|