1
|
Pollard CA, Saito ER, Burns JM, Hill JT, Jenkins TG. Considering Biomarkers of Neurodegeneration in Alzheimer's Disease: The Potential of Circulating Cell-Free DNA in Precision Neurology. J Pers Med 2024; 14:1104. [PMID: 39590596 PMCID: PMC11595805 DOI: 10.3390/jpm14111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are a growing public health crisis, exacerbated by an aging global population and the lack of effective early disease-modifying therapies. Early detection of neurodegenerative disorders is critical to delaying symptom onset and mitigating disease progression, but current diagnostic tools often rely on detecting pathology once clinical symptoms have emerged and significant neuronal damage has already occurred. While disease-specific biomarkers, such as amyloid-beta and tau in AD, offer precise insights, they are too limited in scope for broader neurodegeneration screening for these conditions. Conversely, general biomarkers like neurofilament light chain (NfL) provide valuable staging information but lack targeted insights. Circulating cell-free DNA (cfDNA), released during cell death, is emerging as a promising biomarker for early detection. Derived from dying cells, cfDNA can capture both general neurodegenerative signals and disease-specific insights, offering multi-layered genomic and epigenomic information. Though its clinical potential remains under investigation, advances in cfDNA detection sensitivity, standardized protocols, and reference ranges could establish cfDNA as a valuable tool for early screening. cfDNA methylation signatures, in particular, show great promise for identifying tissue-of-origin and disease-specific changes, offering a minimally invasive biomarker that could transform precision neurology. However, further research is required to address technological challenges and validate cfDNA's utility in clinical settings. Here, we review recent work assessing cfDNA as a potential early biomarker in AD. With continued advances, cfDNA could play a pivotal role in shifting care from reactive to proactive, improving diagnostic timelines and patient outcomes.
Collapse
Affiliation(s)
- Chad A. Pollard
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Resonant, Heber, UT 84032, USA
| | | | - Jeffrey M. Burns
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205, USA
| | - Jonathon T. Hill
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Timothy G. Jenkins
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Resonant, Heber, UT 84032, USA
| |
Collapse
|
2
|
El-Ahmad P, Mendes-Silva AP, Diniz BS. Liquid Biopsy in Neuropsychiatric Disorders: A Step Closer to Precision Medicine. Mol Neurobiol 2024:10.1007/s12035-024-04492-y. [PMID: 39298102 DOI: 10.1007/s12035-024-04492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Psychiatric disorders are among the leading causes of disease burden worldwide. Despite their significant impact, their diagnosis remains challenging due to symptom heterogeneity, psychiatric comorbidity, and the lack of objective diagnostic tests and well-defined biomarkers. Leveraging genomic, epigenomic, and fragmentomic technologies, circulating cell-free DNA (ccfDNA)-based liquid biopsies have emerged as a potential non-invasive diagnosis and disease-monitoring tool. ccfDNA is a DNA species released into circulation from all types of cells through passive and active mechanisms and can serve as a biomarker for various diseases, namely, cancer. Despite their potential, the application of ccfDNA in neuropsychiatry remains underdeveloped. In this review, we provide an overview of liquid biopsies and their components, with a particular focus on ccfDNA. With a summary of pre-analytical practices and current ccfDNA technologies, we highlight the current state of research regarding the use of ccfDNA as a biomarker for neuropsychiatric disorders. Finally, we discuss future steps to unlock ccfDNA's potential in clinical practice.
Collapse
Affiliation(s)
- Perla El-Ahmad
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Macías M, Acha B, Corroza J, Urdánoz-Casado A, Roldan M, Robles M, Sánchez-Ruiz de Gordoa J, Erro ME, Jericó I, Blanco-Luquin I, Mendioroz M. Liquid Biopsy in Alzheimer's Disease Patients Reveals Epigenetic Changes in the PRLHR Gene. Cells 2023; 12:2679. [PMID: 38067107 PMCID: PMC10705731 DOI: 10.3390/cells12232679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, new DNA methylation variants have been reported in genes biologically relevant to Alzheimer's disease (AD) in human brain tissue. However, this AD-specific epigenetic information remains brain-locked and unreachable during patients' lifetimes. In a previous methylome performed in the hippocampus of 26 AD patients and 12 controls, we found higher methylation levels in AD patients in the promoter region of PRLHR, a gene involved in energy balance regulation. Our aim was to further characterize PRLHR's role in AD and to evaluate if the liquid biopsy technique would provide life access to this brain information in a non-invasive way. First, we extended the methylation mapping of PRLHR and validated previous methylome results via bisulfite cloning sequencing. Next, we observed a positive correlation between PRLHR methylation levels and AD-related neuropathological changes and a decreased expression of PRLHR in AD hippocampus. Then, we managed to replicate the hippocampal methylation differences in plasma cfDNA from an additional cohort of 35 AD patients and 35 controls. The isolation of cfDNA from the plasma of AD patients may constitute a source of potential epigenetic biomarkers to aid AD clinical management.
Collapse
Affiliation(s)
- Mónica Macías
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Blanca Acha
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Jon Corroza
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - Amaya Urdánoz-Casado
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Miren Roldan
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Maitane Robles
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Javier Sánchez-Ruiz de Gordoa
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - María Elena Erro
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - Ivonne Jericó
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| | - Idoia Blanco-Luquin
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
| | - Maite Mendioroz
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (M.M.); (B.A.); (A.U.-C.); (M.R.); (M.R.); (J.S.-R.d.G.); (M.E.E.); (I.B.-L.)
- Neurology Department, Hospital Universitario de Navarra, IdiSNA, 31008 Pamplona, Spain; (J.C.); (I.J.)
| |
Collapse
|