1
|
Strafella C, Caputo V, Bortolani S, Torchia E, Megalizzi D, Trastulli G, Monforte M, Colantoni L, Caltagirone C, Ricci E, Tasca G, Cascella R, Giardina E. Whole exome sequencing highlights rare variants in CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1 as associated with FSHD. Front Genet 2023; 14:1235589. [PMID: 37674478 PMCID: PMC10477786 DOI: 10.3389/fgene.2023.1235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction: Despite the progress made in the study of Facioscapulohumeral Dystrophy (FSHD), the wide heterogeneity of disease complicates its diagnosis and the genotype-phenotype correlation among patients and within families. In this context, the present work employed Whole Exome Sequencing (WES) to investigate known and unknown genetic contributors that may be involved in FSHD and may represent potential disease modifiers, even in presence of a D4Z4 Reduced Allele (DRA). Methods: A cohort of 126 patients with clinical signs of FSHD were included in the study, which were characterized by D4Z4 sizing, methylation analysis and WES. Specific protocols were employed for D4Z4 sizing and methylation analysis, whereas the Illumina® Next-Seq 550 system was utilized for WES. The study included both patients with a DRA compatible with FSHD diagnosis and patients with longer D4Z4 alleles. In case of patients harboring relevant variants from WES, the molecular analysis was extended to the family members. Results: The WES data analysis highlighted 20 relevant variants, among which 14 were located in known genetic modifiers (SMCHD1, DNMT3B and LRIF1) and 6 in candidate genes (CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1). Most of them were found together with a permissive short (4-7 RU) or borderline/long DRA (8-20 RU), supporting the possibility that different genes can contribute to disease heterogeneity in presence of a FSHD permissive background. The segregation and methylation analysis among family members, together with clinical findings, provided a more comprehensive picture of patients. Discussion: Our results support FSHD pathomechanism being complex with a multigenic contribution by several known (SMCHD1, DNMT3B, LRIF1) and possibly other candidate genes (CTCF, DNMT1, DNMT3A, EZH2, SUV39H1) to disease penetrance and expressivity. Our results further emphasize the importance of extending the analysis of molecular findings within the proband's family, with the purpose of providing a broader framework for understanding single cases and allowing finer genotype-phenotype correlations in FSHD-affected families.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eleonora Torchia
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle UponTyne, United Kingdom
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
2
|
Gabellini D, Musarò A. 16th Meeting of the Interuniversity Institute of Myology (IIM) - Assisi (Italy), October 17-20, 2019: Foreword, Program and Abstracts. Eur J Transl Myol 2020; 30:9345. [PMID: 33117514 PMCID: PMC7582450 DOI: 10.4081/ejtm.2020.9345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
The 16th Meeting of the Interuniversity Institute of Myology (IIM), October 17-20, 2019, Assisi, Italy brought together scientists, pharma and patient organization representatives discussing new results on muscle research. Internationally renowned Keynote speakers presented advances on muscle development, homeostasis, metabolism, and disease. Speakers selected among submitted abstracts presented their new, unpublished data in seven scientific sessions. The remaining abstracts were showcased in two poster sessions. Young trainees where directly involved in the selection of keynote speakers, the organizing scientific sessions and roundtables discussions tailored to the interests of their peers. A broad Italian, European and North-American audience participated to the different initiatives. The meeting allowed muscle biology researchers to discuss ideas and scientific collaborations aimed at better understanding the mechanisms underlying muscle diseases in order to develop better therapeutic strategies. The active participation of young trainees was facilitated by the friendly and inclusive atmosphere, which fostered lively discussions identifying emerging areas of myology research and stimulated scientific cross-fertilization. The meeting was a success and the IIM community will continue to bring forward significant contributions to the understanding of muscle development and function, the pathogenesis of muscular diseases and the development of novel therapeutic approaches. Here, we report abstracts of the meeting illustrating novel results of basic, translational, and clinical research, which confirms that the Myology field is strong and healthy.
Collapse
Affiliation(s)
- Davide Gabellini
- Gene Expression and Muscular Dystrophy Group, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to “Istituto Pasteur Italia – Fondazione Cenci Bolognetti”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Cortesi A, Pesant M, Sinha S, Marasca F, Sala E, Gregoretti F, Antonelli L, Oliva G, Chiereghin C, Soldà G, Bodega B. 4q-D4Z4 chromatin architecture regulates the transcription of muscle atrophic genes in facioscapulohumeral muscular dystrophy. Genome Res 2019; 29:883-895. [PMID: 31097473 PMCID: PMC6581056 DOI: 10.1101/gr.233288.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Despite increasing insights in genome structure organization, the role of DNA repetitive elements, accounting for more than two thirds of the human genome, remains elusive. Facioscapulohumeral muscular dystrophy (FSHD) is associated with deletion of D4Z4 repeat array below 11 units at 4q35.2. It is known that the deletion alters chromatin structure in cis, leading to gene up-regulation. Here we show a genome-wide role of 4q-D4Z4 array in modulating gene expression via 3D nuclear contacts. We have developed an integrated strategy of 4q-D4Z4-specific 4C-seq and chromatin segmentation analyses, showing that 4q-D4Z4 3D interactome and chromatin states of interacting genes are impaired in FSHD1 condition; in particular, genes that have lost the 4q-D4Z4 interaction and with a more active chromatin state are enriched for muscle atrophy transcriptional signature. Expression level of these genes is restored by the interaction with an ectopic 4q-D4Z4 array, suggesting that the repeat directly modulates the transcription of contacted targets. Of note, the up-regulation of atrophic genes is a common feature of several FSHD1 and FSHD2 patients, indicating that we have identified a core set of deregulated genes involved in FSHD pathophysiology.
Collapse
Affiliation(s)
- Alice Cortesi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milan, Italy
| | - Matthieu Pesant
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milan, Italy
| | - Shruti Sinha
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milan, Italy
| | - Federica Marasca
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milan, Italy
| | - Eleonora Sala
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milan, Italy
| | - Francesco Gregoretti
- CNR Institute for High Performance Computing and Networking (ICAR), 8013, Naples, Italy
| | - Laura Antonelli
- CNR Institute for High Performance Computing and Networking (ICAR), 8013, Naples, Italy
| | - Gennaro Oliva
- CNR Institute for High Performance Computing and Networking (ICAR), 8013, Naples, Italy
| | - Chiara Chiereghin
- Department of Biomedical Sciences, Humanitas University, 20090, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, 20089, Rozzano, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, 20090, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, 20089, Rozzano, Milan, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milan, Italy
| |
Collapse
|
4
|
Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS One 2017; 12:e0179464. [PMID: 28609469 PMCID: PMC5469484 DOI: 10.1371/journal.pone.0179464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/29/2017] [Indexed: 11/18/2022] Open
Abstract
Post-translational modifications of histones play a key role in the regulation of gene expression during development and differentiation. Numerous studies have shown the dynamics of combinatorial regulation by transcription factors and histone modifications, in the sense that different combinations lead to distinct expression outcomes. Here, we investigated gene regulation by stable enrichment patterns of histone marks H3K4me2 and H3K4me3 in combination with the chromatin binding of the muscle tissue-specific transcription factor MyoD during myogenic differentiation of C2C12 cells. Using k-means clustering, we found that specific combinations of H3K4me2/3 profiles over and towards the gene body impact on gene expression and marks a subset of genes important for muscle development and differentiation. By further analysis, we found that the muscle key regulator MyoD was significantly enriched on this subset of genes and played a repressive role during myogenic differentiation. Among these genes, we identified the pluripotency gene Patz1, which is repressed during myogenic differentiation through direct binding of MyoD to promoter elements. These results point to the importance of integrating histone modifications and MyoD chromatin binding for coordinated gene activation and repression during myogenic differentiation.
Collapse
|
5
|
Caron L, Kher D, Lee KL, McKernan R, Dumevska B, Hidalgo A, Li J, Yang H, Main H, Ferri G, Petek LM, Poellinger L, Miller DG, Gabellini D, Schmidt U. A Human Pluripotent Stem Cell Model of Facioscapulohumeral Muscular Dystrophy-Affected Skeletal Muscles. Stem Cells Transl Med 2016; 5:1145-61. [PMID: 27217344 PMCID: PMC4996435 DOI: 10.5966/sctm.2015-0224] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/07/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED : Facioscapulohumeral muscular dystrophy (FSHD) represents a major unmet clinical need arising from the progressive weakness and atrophy of skeletal muscles. The dearth of adequate experimental models has severely hampered our understanding of the disease. To date, no treatment is available for FSHD. Human embryonic stem cells (hESCs) potentially represent a renewable source of skeletal muscle cells (SkMCs) and provide an alternative to invasive patient biopsies. We developed a scalable monolayer system to differentiate hESCs into mature SkMCs within 26 days, without cell sorting or genetic manipulation. Here we show that SkMCs derived from FSHD1-affected hESC lines exclusively express the FSHD pathogenic marker double homeobox 4 and exhibit some of the defects reported in FSHD. FSHD1 myotubes are thinner when compared with unaffected and Becker muscular dystrophy myotubes, and differentially regulate genes involved in cell cycle control, oxidative stress response, and cell adhesion. This cellular model will be a powerful tool for studying FSHD and will ultimately assist in the development of effective treatments for muscular dystrophies. SIGNIFICANCE This work describes an efficient and highly scalable monolayer system to differentiate human pluripotent stem cells (hPSCs) into skeletal muscle cells (SkMCs) and demonstrates disease-specific phenotypes in SkMCs derived from both embryonic and induced hPSCs affected with facioscapulohumeral muscular dystrophy. This study represents the first human stem cell-based cellular model for a muscular dystrophy that is suitable for high-throughput screening and drug development.
Collapse
Affiliation(s)
- Leslie Caron
- Genea Biocells Pty. Ltd., Sydney, New South Wales, Australia
| | - Devaki Kher
- Genea Biocells Pty. Ltd., Sydney, New South Wales, Australia
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Robert McKernan
- Genea Biocells Pty. Ltd., Sydney, New South Wales, Australia
| | | | | | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Heather Main
- Genea Biocells Pty. Ltd., Sydney, New South Wales, Australia
| | - Giulia Ferri
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy Vita-Salute San Raffaele University, Milano, Italy
| | - Lisa M Petek
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel G Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Davide Gabellini
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Uli Schmidt
- Genea Biocells Pty. Ltd., Sydney, New South Wales, Australia Genea Biocells US Inc., San Diego, California, USA
| |
Collapse
|
6
|
Wang D, Mansisidor A, Prabhakar G, Hochwagen A. Condensin and Hmo1 Mediate a Starvation-Induced Transcriptional Position Effect within the Ribosomal DNA Array. Cell Rep 2016; 14:1010-1017. [PMID: 26832415 DOI: 10.1016/j.celrep.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023] Open
Abstract
Repetitive DNA arrays are important structural features of eukaryotic genomes that are often heterochromatinized to suppress repeat instability. It is unclear, however, whether all repeats within an array are equally subject to heterochromatin formation and gene silencing. Here, we show that in starving Saccharomyces cerevisiae, silencing of reporter genes within the ribosomal DNA (rDNA) array is less pronounced in outer repeats compared with inner repeats. This position effect is linked to the starvation-induced contraction of the nucleolus. We show that the chromatin regulators condensin and Hmo1 redistribute within the rDNA upon starvation; that Hmo1, like condensin, is required for nucleolar contraction; and that the position effect partially depends on both proteins. Starvation-induced nucleolar contraction and differential desilencing of the outer rDNA repeats may provide a mechanism to activate rDNA-encoded RNAPII transcription units without causing general rDNA instability.
Collapse
Affiliation(s)
- Danni Wang
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
7
|
DNA methylation analysis of the macrosatellite repeat associated with FSHD muscular dystrophy at single nucleotide level. PLoS One 2014; 9:e115278. [PMID: 25545674 PMCID: PMC4278900 DOI: 10.1371/journal.pone.0115278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/23/2014] [Indexed: 11/26/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common inherited diseases of the skeletal muscle. It is characterized by asymmetric muscle weakness and variable penetrance. FSHD is linked to a reduction in copy number of the D4Z4 3.3 kb macrosatellite repeat, located in 4q35. This causes the epigenetic de-repression of FSHD candidate genes leading to disease. Nevertheless, the molecular mechanism responsible for silencing of FSHD candidate genes in healthy subjects is not fully understood. While a role for DNA methylation has been suggested, so far there is limited information regarding the methylation status of the 325 CpGs contained in each D4Z4 unit. Using a human/rodent monochromosomal hybrid cell line containing a single human chromosome 4, we performed an in depth analysis of DNA methylation for the majority of the CpGs inside D4Z4 at single nucleotide level. We found that D4Z4 is not uniformly methylated and that the level of DNA methylation does not correlate with the density of CpG dinucleotides. Moreover, in several D4Z4 regions characterized by near complete methylation, we found specific unmethylated CpGs. These elements are enriched in transcription factor binding sites that could be involved in muscle-specific D4Z4 activity. Our approach also detected differential methylation among different D4Z4 units, suggesting that the D4Z4 array is a mosaic of euchromatic and heterochromatic domains. Finally, we found that DNA methylation and histone de-acetylation are required to maintain FSHD candidate genes repressed. Taken together, our data underscore new players involved in the epigenetic regulation of the FSHD locus that could be targeted for therapeutic purposes.
Collapse
|
8
|
Influence of immune responses in gene/stem cell therapies for muscular dystrophies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:818107. [PMID: 24959590 PMCID: PMC4052166 DOI: 10.1155/2014/818107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/07/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023]
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.
Collapse
|
9
|
Neguembor MV, Jothi M, Gabellini D. Long noncoding RNAs, emerging players in muscle differentiation and disease. Skelet Muscle 2014; 4:8. [PMID: 24685002 PMCID: PMC3973619 DOI: 10.1186/2044-5040-4-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
The vast majority of the mammalian genome is transcribed giving rise to many different types of noncoding RNAs. Among them, long noncoding RNAs are the most numerous and functionally versatile class. Indeed, the lncRNA repertoire might be as rich as the proteome. LncRNAs have emerged as key regulators of gene expression at multiple levels. They play important roles in the regulation of development, differentiation and maintenance of cell identity and they also contribute to disease. In this review, we present recent advances in the biology of lncRNAs in muscle development and differentiation. We will also discuss the contribution of lncRNAs to muscle disease with a particular focus on Duchenne and facioscapulohumeral muscular dystrophies.
Collapse
Affiliation(s)
| | | | - Davide Gabellini
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem cells, and Gene therapy, DIBIT2, 5A3, Via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
10
|
Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M, Mehta N, Fackelmayer FO, Lawrence JB. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 2014; 156:907-19. [PMID: 24581492 PMCID: PMC4023122 DOI: 10.1016/j.cell.2014.01.042] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 10/15/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
Recent studies recognize a vast diversity of noncoding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using C0T-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (C0T-1 RNA), including LINE-1. C0T-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The C0T-1 RNA territory resists mechanical disruption and fractionates with the nonchromatin scaffold but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. C0T-1 RNA has several properties similar to XIST chromosomal RNA but is excluded from chromatin condensed by XIST. These findings impact two "black boxes" of genome science: the poorly understood diversity of noncoding RNA and the unexplained abundance of repetitive elements.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dawn M Carone
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Alvin V Gomez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Heather J Kolpa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nitish Mehta
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Frank O Fackelmayer
- Laboratory of Epigenetics and Chromosome Biology, Department of Biomedical Research, Institute for Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 45110 Ioannina, Greece
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
11
|
Schreiber O, Schneiderat P, Kress W, Rautenstrauss B, Senderek J, Schoser B, Walter MC. Facioscapulohumeral muscular dystrophy and Charcot-Marie-Tooth neuropathy 1A - evidence for "double trouble" overlapping syndromes. BMC MEDICAL GENETICS 2013; 14:92. [PMID: 24041033 PMCID: PMC3848428 DOI: 10.1186/1471-2350-14-92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/12/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND We report on a patient with genetically confirmed overlapping diagnoses of CMT1A and FSHD. This case adds to the increasing number of unique patients presenting with atypical phenotypes, particularly in FSHD. Even if a mutation in one disease gene has been found, further genetic testing might be warranted in cases with unusual clinical presentation. CASE PRESENTATION The reported 53 years old male patient suffered from walking difficulties and foot deformities first noticed at age 20. Later on, he developed scapuloperoneal and truncal muscle weakness, along with atrophy of the intrinsic hand and foot muscles, pes cavus, claw toes and a distal symmetric hypoesthesia. Motor nerve conduction velocities were reduced to 20 m/s in the upper extremities, and not educible in the lower extremities, sensory nerve conduction velocities were not attainable. Electromyography showed both, myopathic and neurogenic changes. A muscle biopsy taken from the tibialis anterior muscle showed a mild myopathy with some neurogenic findings and hypertrophic type 1 fibers. Whole-body muscle MRI revealed severe changes in the lower leg muscles, tibialis anterior and gastrocnemius muscles were highly replaced by fatty tissue. Additionally, fatty degeneration of shoulder girdle and straight back muscles, and atrophy of dorsal upper leg muscles were seen. Taken together, the presenting features suggested both, a neuropathy and a myopathy. Patient's family history suggested an autosomal dominant inheritance.Molecular testing revealed both, a hereditary motor and sensory neuropathy type 1A (HMSN1A, also called Charcot-Marie-Tooth neuropathy 1A, CMT1A) due to a PMP22 gene duplication and facioscapulohumeral muscular dystrophy (FSHD) due to a partial deletion of the D4Z4 locus (19 kb). CONCLUSION Molecular testing in hereditary neuromuscular disorders has led to the identification of an increasing number of atypical phenotypes. Nevertheless, finding the right diagnosis is crucial for the patient in order to obtain adequate medical care and appropriate genetic counseling, especially in the background of arising curative therapies.
Collapse
Affiliation(s)
- Olivia Schreiber
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Ziemssenstrasse 1, D-80336 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Neguembor MV, Xynos A, Onorati MC, Caccia R, Bortolanza S, Godio C, Pistoni M, Corona DF, Schotta G, Gabellini D. FSHD muscular dystrophy region gene 1 binds Suv4-20h1 histone methyltransferase and impairs myogenesis. J Mol Cell Biol 2013; 5:294-307. [DOI: 10.1093/jmcb/mjt018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
13
|
Pistoni M, Shiue L, Cline MS, Bortolanza S, Neguembor MV, Xynos A, Ares M, Gabellini D. Rbfox1 downregulation and altered calpain 3 splicing by FRG1 in a mouse model of Facioscapulohumeral muscular dystrophy (FSHD). PLoS Genet 2013; 9:e1003186. [PMID: 23300487 PMCID: PMC3536703 DOI: 10.1371/journal.pgen.1003186] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/06/2012] [Indexed: 01/17/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle disease whose molecular pathogenesis remains largely unknown. Over-expression of FSHD region gene 1 (FRG1) in mice, frogs, and worms perturbs muscle development and causes FSHD-like phenotypes. FRG1 has been implicated in splicing, and we asked how splicing might be involved in FSHD by conducting a genome-wide analysis in FRG1 mice. We find that splicing perturbations parallel the responses of different muscles to FRG1 over-expression and disease progression. Interestingly, binding sites for the Rbfox family of splicing factors are over-represented in a subset of FRG1-affected splicing events. Rbfox1 knockdown, over-expression, and RNA-IP confirm that these are direct Rbfox1 targets. We find that FRG1 is associated to the Rbfox1 RNA and decreases its stability. Consistent with this, Rbfox1 expression is down-regulated in mice and cells over-expressing FRG1 as well as in FSHD patients. Among the genes affected is Calpain 3, which is mutated in limb girdle muscular dystrophy, a disease phenotypically similar to FSHD. In FRG1 mice and FSHD patients, the Calpain 3 isoform lacking exon 6 (Capn3 E6-) is increased. Finally, Rbfox1 knockdown and over-expression of Capn3 E6- inhibit muscle differentiation. Collectively, our results suggest that a component of FSHD pathogenesis may arise by over-expression of FRG1, reducing Rbfox1 levels and leading to aberrant expression of an altered Calpain 3 protein through dysregulated splicing.
Collapse
Affiliation(s)
- Mariaelena Pistoni
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Lily Shiue
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Melissa S. Cline
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sergia Bortolanza
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Maria Victoria Neguembor
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Alexandros Xynos
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Manuel Ares
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Davide Gabellini
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
14
|
Casa V, Gabellini D. A repetitive elements perspective in Polycomb epigenetics. Front Genet 2012; 3:199. [PMID: 23060903 PMCID: PMC3465993 DOI: 10.3389/fgene.2012.00199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/17/2012] [Indexed: 01/10/2023] Open
Abstract
Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non-functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression, and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome re-arrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements' activity is fundamental. Polycomb group (PcG) proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins. Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space.
Collapse
Affiliation(s)
- Valentina Casa
- Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Dulbecco Telethon Institute and San Raffaele Scientific Institute Milano, Italy ; Università Vita-Salute San Raffaele Milano, Italy
| | | |
Collapse
|
15
|
Cabianca DS, Casa V, Gabellini D. A novel molecular mechanism in human genetic disease: a DNA repeat-derived lncRNA. RNA Biol 2012; 9:1211-7. [PMID: 23047063 DOI: 10.4161/rna.21922] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two thirds of the human genome is composed of repetitive sequences. Despite their prevalence, DNA repeats are largely ignored. The vast majority of our genome is transcribed to produce non protein-coding RNAs. Among these, long non protein-coding RNAs represent the most prevalent and functionally diverse class. The relevance of the non protein-coding genome to human disease has mainly been studied regarding the altered microRNA expression and function in human cancer. On the contrary, the elucidation of the involvement of long non-coding RNAs in disease is only in its infancy. We have recently found that a chromatin associated, long non protein-coding RNA regulates a Polycomb/Trithorax epigenetic switch at the basis of the repeat associated facioscapulohumeral muscular dystrophy, a common muscle disorder. Based on this, we propose that long non-coding RNAs produced by repetitive sequences contribute in shaping the epigenetic landscape in normal human physiology and in disease.
Collapse
Affiliation(s)
- Daphne S Cabianca
- Dulbecco Telethon Institute and Division of Regenerative Medicine, Stem cells, and Gene therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
16
|
Giussani M, Cardone MF, Bodega B, Ginelli E, Meneveri R. Evolutionary history of linked D4Z4 and Beta satellite clusters at the FSHD locus (4q35). Genomics 2012; 100:289-96. [PMID: 22824653 PMCID: PMC3488192 DOI: 10.1016/j.ygeno.2012.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/21/2012] [Accepted: 07/12/2012] [Indexed: 01/10/2023]
Abstract
We performed a detailed genomic investigation of the chimpanzee locus syntenic to human chromosome 4q35.2, associated to the facioscapulohumeral dystrophy. Two contigs of approximately 150 kb and 200 kb were derived from PTR chromosomes 4q35 and 3p12, respectively: both regions showed a very similar sequence organization, including D4Z4 and Beta satellite linked clusters. Starting from these findings, we derived a hypothetical evolutionary history of human 4q35, 10q26 and 3p12 chromosome regions focusing on the D4Z4–Beta satellite linked organization. The D4Z4 unit showed an open reading frame (DUX4) at both PTR 4q35 and 3p12 regions; furthermore some subregions of the Beta satellite unit showed a high degree of conservation between chimpanzee and humans. In conclusion, this paper provides evidence that at the 4q subtelomere the linkage between D4Z4 and Beta satellite arrays is a feature that appeared late during evolution and is conserved between chimpanzee and humans.
Collapse
Affiliation(s)
- Marta Giussani
- Department of Biology and Genetics for Medical Sciences, University of Milan, Milan, Italy.
| | | | | | | | | |
Collapse
|
17
|
Jones TI, Chen JCJ, Rahimov F, Homma S, Arashiro P, Beermann ML, King OD, Miller JB, Kunkel LM, Emerson CP, Wagner KR, Jones PL. Facioscapulohumeral muscular dystrophy family studies of DUX4 expression: evidence for disease modifiers and a quantitative model of pathogenesis. Hum Mol Genet 2012; 21:4419-30. [PMID: 22798623 DOI: 10.1093/hmg/dds284] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), the most prevalent myopathy afflicting both children and adults, is predominantly associated with contractions in the 4q35-localized macrosatellite D4Z4 repeat array. Recent studies have proposed that FSHD pathology is caused by the misexpression of the DUX4 (double homeobox 4) gene resulting in production of a pathogenic protein, DUX4-FL, which has been detected in FSHD, but not in unaffected control myogenic cells and muscle tissue. Here, we report the analysis of DUX4 mRNA and protein expression in a much larger collection of myogenic cells and muscle biopsies derived from biceps and deltoid muscles of FSHD affected subjects and their unaffected first-degree relatives. We confirmed that stable DUX4-fl mRNA and protein were expressed in myogenic cells and muscle tissues derived from FSHD affected subjects, including several genetically diagnosed adult FSHD subjects yet to show clinical manifestations of the disease in the assayed muscles. In addition, we report DUX4-fl mRNA and protein expression in muscle biopsies and myogenic cells from genetically unaffected relatives of the FSHD subjects, although at a significantly lower frequency. These results establish that DUX4-fl expression per se is not sufficient for FSHD muscle pathology and indicate that quantitative modifiers of DUX4-fl expression and/or function and family genetic background are determinants of FSHD muscle disease progression.
Collapse
|
18
|
Lanzuolo C. Epigenetic alterations in muscular disorders. Comp Funct Genomics 2012; 2012:256892. [PMID: 22761545 PMCID: PMC3385594 DOI: 10.1155/2012/256892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/11/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- CNR Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
19
|
Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 2012; 149:819-31. [PMID: 22541069 PMCID: PMC3350859 DOI: 10.1016/j.cell.2012.03.035] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 02/05/2023]
Abstract
Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors targets D4Z4 in healthy subjects and that D4Z4 deletion is associated with reduced Polycomb silencing in FSHD patients. We identify DBE-T, a chromatin-associated noncoding RNA produced selectively in FSHD patients that coordinates de-repression of 4q35 genes. DBE-T recruits the Trithorax group protein Ash1L to the FSHD locus, driving histone H3 lysine 36 dimethylation, chromatin remodeling, and 4q35 gene transcription. This study provides insights into the biological function of repetitive sequences in regulating gene expression and shows how mutations of such elements can influence the progression of a human genetic disease.
Collapse
Affiliation(s)
- Daphne S Cabianca
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Bortolanza S, Nonis A, Sanvito F, Maciotta S, Sitia G, Wei J, Torrente Y, Di Serio C, Chamberlain JR, Gabellini D. AAV6-mediated systemic shRNA delivery reverses disease in a mouse model of facioscapulohumeral muscular dystrophy. Mol Ther 2011; 19:2055-64. [PMID: 21829175 PMCID: PMC3222524 DOI: 10.1038/mt.2011.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Treatment of dominantly inherited muscle disorders remains a difficult task considering the need to eliminate the pathogenic gene product in a body-wide fashion. We show here that it is possible to reverse dominant muscle disease in a mouse model of facioscapulohumeral muscular dystrophy (FSHD). FSHD is a common form of muscular dystrophy associated with a complex cascade of epigenetic events following reduction in copy number of D4Z4 macrosatellite repeats located on chromosome 4q35. Several 4q35 genes have been examined for their role in disease, including FRG1. Overexpression of FRG1 causes features related to FSHD in transgenic mice and the FRG1 mouse is currently the only available mouse model of FSHD. Here we show that systemic delivery of RNA interference expression cassettes in the FRG1 mouse, after the onset of disease, led to a dose-dependent long-term FRG1 knockdown without signs of toxicity. Histological features including centrally nucleated fibers, fiber size reduction, fibrosis, adipocyte accumulation, and inflammation were all significantly improved. FRG1 mRNA knockdown resulted in a dramatic restoration of muscle function. Through RNA interference (RNAi) expression cassette redesign, our method is amenable to targeting any pathogenic gene offering a viable option for long-term, body-wide treatment of dominant muscle disease in humans.
Collapse
Affiliation(s)
- Sergia Bortolanza
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cabianca DS, Gabellini D. The cell biology of disease: FSHD: copy number variations on the theme of muscular dystrophy. J Cell Biol 2010; 191:1049-60. [PMID: 21149563 PMCID: PMC3002039 DOI: 10.1083/jcb.201007028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/08/2010] [Indexed: 01/17/2023] Open
Abstract
In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD.
Collapse
Affiliation(s)
- Daphne Selvaggia Cabianca
- International PhD Program in Cellular and Molecular Biology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
| | - Davide Gabellini
- Division of Regenerative Medicine, San Raffaele Scientific Institute, DIBIT 1, 2A3-49, 20132 Milan, Italy
- Dulbecco Telethon Institute, 20132 Milan, Italy
| |
Collapse
|
22
|
Abstract
Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle.
Collapse
Affiliation(s)
- Mariaelena Pistoni
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|