1
|
Santos KR, Souza FN, Ramos-Sanchez EM, Batista CF, Reis LC, Fotoran WL, Heinemann MB, Cunha AF, Rocha MC, Faria AR, Andrade HM, Cerqueira MMOP, Gidlund M, Goto H, Della Libera AMMP. Staphylococcus aureus-Cure-Associated Antigens Elicit Type 3 Immune Memory T Cells. Antibiotics (Basel) 2022; 11:1831. [PMID: 36551488 PMCID: PMC9774748 DOI: 10.3390/antibiotics11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the most frequently major mastitis pathogens that cause clinical and subclinical mastitis worldwide. Current antimicrobial treatments are usually ineffective, and the commercially available vaccines lack proven effectiveness. The immunological response elicited by the recombinant S. aureus-cure-associated proteins phosphoglycerate kinase (PGK), enolase (ENO), and elongation factor-G (EF-G) in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA vaccination was studied in this work. METHODS Here, twenty-three C57BL/6 mice were divided into four groups and vaccinated with: G1: none (control); G2: GM-CSF DNA plasmid DNA vaccine; G3: the combination of EF-G+ENO+PGK; and G4: the combinations of EF-G+ENO+PGK proteins plus GM-CSF plasmid DNA vaccine. After 44 days, spleen cells were collected for immunophenotyping and lymphocyte proliferation evaluation by flow cytometry upon S. aureus stimulus. RESULTS Immunization with the three S. aureus recombinant proteins alone resulted in a higher percentage of IL-17A+ cells among CD8+ T central memory cells, as well as the highest intensity of IL-17A production by overall lymphocytes indicating that the contribution of the combined lymphocyte populations is crucial to sustaining a type 3 cell immunity environment. CONCLUSION The immunization with three S. aureus-cure-associated recombinant proteins triggered type 3 immunity, which is a highly interesting path to pursue an effective bovine S. aureus mastitis vaccine.
Collapse
Affiliation(s)
- Kamila R. Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Fernando N. Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
| | - Eduardo M. Ramos-Sanchez
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia 58397-000, Brazil
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Torino Rodriguez de Mendonza de Amazonas, Chachapoyas 01001, Peru
| | - Camila F. Batista
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Luiza C. Reis
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Wesley L. Fotoran
- Laboratório de Genética, Instituto Butantã, Universidade de São Paulo, São Paulo 05503-900, Brazil
| | - Marcos B. Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Adriano F. Cunha
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Mussya C. Rocha
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Angélica R. Faria
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratório de Parasitologia Clínica, Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-000, Brazil
| | - Hélida M. Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Mônica M. O. P. Cerqueira
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-010, Brazil
| | - Magnus Gidlund
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Hiro Goto
- Laboratório de Soroloepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo 05403-000, Brazil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Alice Maria M. P. Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
2
|
Staphylococcus aureus Protection-Related Type 3 Cell-Mediated Immune Response Elicited by Recombinant Proteins and GM-CSF DNA Vaccine. Vaccines (Basel) 2021; 9:vaccines9080899. [PMID: 34452024 PMCID: PMC8402413 DOI: 10.3390/vaccines9080899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus mastitis remains a major challenge for dairy farming. Here, 24 mice were immunized and divided into four groups: G1: control; G2: Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) DNA vaccine; G3: F0F1 ATP synthase subunit α (SAS), succinyl-diaminopimelate (SDD), and cysteinyl-tRNA synthetase (CTS) recombinant proteins; and G4: SAS+SDD+CTS plus GM-CSF DNA vaccine. The lymphocyte subpopulations, and the intracellular interleukin-17A (IL-17A) and interferon-γ production in the draining lymph node cells were immunophenotyped by flow cytometry. The immunophenotyping and lymphocyte proliferation was determined in spleen cells cultured with and without S. aureus stimulus. Immunization with S. aureus recombinant proteins generated memory cells in draining lymph nodes. Immunization with the three recombinant proteins plus GM-CSF DNA led to an increase in the percentage of IL-17A+ cells among overall CD44+ (memory), T CD4+, CD4+ T CD44+ CD27-, γδ TCR, γδ TCR+ CD44+ CD27+, and TCRVγ4+ cells. Vaccination with S. aureus recombinant proteins associated with GM-CSF DNA vaccine downregulated TH2 immunity. Immunization with the three recombinant proteins plus the GM-CSF DNA led to a proliferation of overall memory T, CD4+, and CD4+ TEM cells upon S. aureus stimulus. This approach fostered type 3 immunity, suggesting the development of a protective immune response against S. aureus.
Collapse
|
3
|
Mrochen DM, Trübe P, Jorde I, Domanska G, van den Brandt C, Bröker BM. Immune Polarization Potential of the S. aureus Virulence Factors SplB and GlpQ and Modulation by Adjuvants. Front Immunol 2021; 12:642802. [PMID: 33936060 PMCID: PMC8081891 DOI: 10.3389/fimmu.2021.642802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Protection against Staphylococcus aureus is determined by the polarization of the anti-bacterial immune effector mechanisms. Virulence factors of S. aureus can modulate these and induce differently polarized immune responses in a single individual. We proposed that this may be due to intrinsic properties of the bacterial proteins. To test this idea, we selected two virulence factors, the serine protease-like protein B (SplB) and the glycerophosphoryl diester phosphodiesterase (GlpQ). In humans naturally exposed to S. aureus, SplB induces a type 2-biased adaptive immune response, whereas GlpQ elicits type 1/type 3 immunity. We injected the recombinant bacterial antigens into the peritoneum of S. aureus-naïve C57BL/6N mice and analyzed the immune response. This was skewed by SplB toward a Th2 profile including specific IgE, whereas GlpQ was weakly immunogenic. To elucidate the influence of adjuvants on the proteins’ polarization potential, we studied Montanide ISA 71 VG and Imject™Alum, which promote a Th1 and Th2 response, respectively. Alum strongly increased antibody production to the Th2-polarizing protein SplB, but did not affect the response to GlpQ. Montanide enhanced the antibody production to both S. aureus virulence factors. Montanide also augmented the inflammation in general, whereas Alum had little effect on the cellular immune response. The adjuvants did not override the polarization potential of the S. aureus proteins on the adaptive immune response.
Collapse
Affiliation(s)
- Daniel M Mrochen
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Patricia Trübe
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Ilka Jorde
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Grazyna Domanska
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | | | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Front Immunol 2020; 11:1755. [PMID: 32849627 PMCID: PMC7419648 DOI: 10.3389/fimmu.2020.01755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in bacteria causing endogenous infections has entailed a need for innovative approaches to therapy and prophylaxis of these infections and raised a new interest in vaccines for prevention of colonization and infection by typically antibiotic resistant pathogens. Nevertheless, there has been a long history of failures in late stage clinical development of this type of vaccines, which remains not fully understood. This article provides an overview on present and past vaccine developments targeting nosocomial bacterial pathogens; it further highlights the specific challenges associated with demonstrating clinical efficacy of these vaccines and the facts to be considered in future study designs. Notably, these vaccines are mainly applied to subjects with preexistent immunity to the target pathogen, transient or chronic immunosuppression and ill-defined microbiome status. Unpredictable attack rates and changing epidemiology as well as highly variable genetic and immunological strain characteristics complicate the development. In views of the clinical need, re-thinking of the study designs and expectations seems warranted: first of all, vaccine development needs to be footed on a clear rationale for choosing the immunological mechanism of action and the optimal time point for vaccination, e.g., (1) prevention (or reduction) of colonization vs. prevention of infection and (2) boosting of a preexistent immune response vs. altering the quality of the immune response. Furthermore, there are different, probably redundant, immunological and microbiological defense mechanisms that provide protection from infection. Their interplay is not well-understood but as a consequence their effect might superimpose vaccine-mediated resolution of infection and lead to failure to demonstrate efficacy. This implies that improved characterization of patient subpopulations within the trial population should be obtained by pro- and retrospective analyses of trial data on subject level. Statistical and systems biology approaches could help to define immune and microbiological biomarkers that discern populations that benefit from vaccination from those where vaccines might not be effective.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Division of Microbiology, Langen, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Muñoz-Silvestre A, Penadés M, Selva L, Pérez-Fuentes S, Moreno-Grua E, García-Quirós A, Pascual JJ, Arnau-Bonachera A, Barragán A, Corpa JM, Viana D. Pathogenesis of Intradermal Staphylococcal Infections: Rabbit Experimental Approach to Natural Staphylococcus aureus Skin Infections. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1188-1210. [PMID: 32201266 DOI: 10.1016/j.ajpath.2020.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 10/24/2022]
Abstract
Despite the enormous efforts made to achieve effective tools that fight against Staphylococcus aureus, the results have not been successful. This failure may be due to the absence of truly representative experimental models. To overcome this deficiency, the present work describes and immunologically characterizes the infection for 28 days, in an experimental low-dose (300 colony-forming units) intradermal model of infection in rabbits, which reproduces the characteristic staphylococcal abscess. Surprisingly, when mutant strains in the genes involved in virulence (JΔagr, JΔcoaΔvwb, JΔhla, and JΔpsmα) were inoculated, no strong effect on the severity of lesions was observed, unlike other models that use high doses of bacteria. The inoculation of a human rabbitized (FdltBr) strain demonstrated its capacity to generate a similar inflammatory response to a wild-type rabbit strain and, therefore, validated this model for conducting these experimental studies with human strains. To conclude, this model proved reproducible and may be an option of choice to check both wild-type and mutant strains of different origins.
Collapse
Affiliation(s)
- Asunción Muñoz-Silvestre
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Mariola Penadés
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Laura Selva
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Sara Pérez-Fuentes
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Elena Moreno-Grua
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Ana García-Quirós
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Juan J Pascual
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Alberto Arnau-Bonachera
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Agustín Barragán
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Juan M Corpa
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| | - David Viana
- Biomedical Research Institute (PASAPTA-Pathology Group), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
6
|
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 2018; 4:18033. [PMID: 29849094 DOI: 10.1038/nrdp.2018.33] [Citation(s) in RCA: 804] [Impact Index Per Article: 114.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the 1960s, methicillin-resistant Staphylococcus aureus (MRSA) has emerged, disseminated globally and become a leading cause of bacterial infections in both health-care and community settings. However, there is marked geographical variation in MRSA burden owing to several factors, including differences in local infection control practices and pathogen-specific characteristics of the circulating clones. Different MRSA clones have resulted from the independent acquisition of staphylococcal cassette chromosome mec (SCCmec), which contains genes encoding proteins that render the bacterium resistant to most β-lactam antibiotics (such as methicillin), by several S. aureus clones. The success of MRSA is a consequence of the extensive arsenal of virulence factors produced by S. aureus combined with β-lactam resistance and, for most clones, resistance to other antibiotic classes. Clinical manifestations of MRSA range from asymptomatic colonization of the nasal mucosa to mild skin and soft tissue infections to fulminant invasive disease with high mortality. Although treatment options for MRSA are limited, several new antimicrobials are under development. An understanding of colonization dynamics, routes of transmission, risk factors for progression to infection and conditions that promote the emergence of resistance will enable optimization of strategies to effectively control MRSA. Vaccine candidates are also under development and could become an effective prevention measure.
Collapse
Affiliation(s)
- Andie S Lee
- Departments of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Hermínia de Lencastre
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, USA.,Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Javier Garau
- Department of Medicine, Hospital Universitari Mutua de Terrassa, Barcelona, Spain
| | - Jan Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Universiteit Antwerpen, Wilrijk, Belgium
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Department, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Stephan Harbarth
- Infection Control Programme, University of Geneva Hospitals and Faculty of Medicine, WHO Collaborating Center, Geneva, Switzerland
| |
Collapse
|