1
|
Upert G, Luther A, Obrecht D, Ermert P. Emerging peptide antibiotics with therapeutic potential. MEDICINE IN DRUG DISCOVERY 2021; 9:100078. [PMID: 33398258 PMCID: PMC7773004 DOI: 10.1016/j.medidd.2020.100078] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 02/09/2023] Open
Abstract
This review covers some of the recent progress in the field of peptide antibiotics with a focus on compounds with novel or established mode of action and with demonstrated efficacy in animal infection models. Novel drug discovery approaches, linear and macrocyclic peptide antibiotics, lipopeptides like the polymyxins as well as peptides addressing targets located in the plasma membrane or in the outer membrane of bacterial cells are discussed.
Collapse
Key Words
- ADMET, absorption, distribution, metabolism and excretion – toxicity in pharmacokinetics
- AMP, antimicrobial peptide
- AMR, antimicrobial resistance
- ATCC, ATCC cell collection
- Antibiotic
- BAM, β-barrel assembly machinery
- CC50, cytotoxic concentration to kill 50% of cells
- CD, circular dichroism
- CFU, colony forming unit
- CLSI, clinical and laboratory standards institute
- CMS, colistin methane sulfonate
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- ESKAPE, acronym encompassing six bacterial pathogens (often carrying antibiotic resistance): Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp
- FDA, U. S. Food and Drug Administration
- HABP, hospital acquired bacterial pneumonia
- HDP, host-defense peptide
- HEK293, human embryonic kidney 293 cells
- HK-2, human kidney 2 cells (proximal tubular cell line)
- HepG2, human hepatocellular carcinoma cell line
- Hpg, 4-hydroxy-phenyl glycine
- ITC, isothermal titration calorimetry
- KPC, Klebsiella pneumoniae metallo-β-lactamase C resistant
- LPS, lipopolysaccharide
- LptA, lipopolysaccharide transport protein A
- LptC, lipopolysaccharide transport protein C
- LptD, lipopolysaccharide transport protein D
- MDR, multidrug-resistant
- MH-I, Müller-Hinton broth I
- MH-II, Müller-Hinton broth II (cation adjusted)
- MIC, minimal inhibitory concentration
- MRSA, methicilline-resistant S. aureus
- MSSA, methicilline-sensitive S. aureus
- MoA, mechanism (mode) of action
- NDM-1, New Delhi metallo-β-lactamase resistant
- NOAEL, no adverse effect level
- ODL, odilorhabdin
- OMPTA (outer membrane targeting antibiotic)
- OMPTA, outer membrane targeting antibiotic
- Omp, outer membrane protein
- PBMC, peripheral mononuclear blood cell
- PBP, penicillin-binding protein
- PBS, phosphate-buffered saline
- PK, pharmacokinetics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- POPG, 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-(1-glycerol)
- PrAMPs, polyproline antimicrobial peptides
- RBC, red blood cell
- SAR, structure-activity relationship
- SPR, surface plasmon resonance
- SPase I, signal peptidase I
- VABP, ventilator associated bacterial pneumonia
- VIM-1, beta-lactamase 2 (K. pneumoniae)
- VISA, vancomycin-intermediate S. aureus
- VRE, vancomycin-resistant enterococcus
- WHO, World Health Organization
- WT, wild type
- WTA, wall teichoic acid
- XDR, extremely drug-resistant
- antimicrobial peptide
- antimicrobial resistance
- bid, bis in die (two times a day)
- i.p., intraperitoneal
- i.v., intravenous
- lipopeptide
- mITT population, minimal intend-to-treat population
- peptide antibiotic
- s.c., subcutaneous
Collapse
Affiliation(s)
- Gregory Upert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Anatol Luther
- Bachem AG, Hauptstrasse 114, 4416 Bubendorf, Switzerland
| | - Daniel Obrecht
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| | - Philipp Ermert
- Polyphor Ltd, Hegenheimermattweg 125, 4123 Allschwil, Switzerland
| |
Collapse
|
2
|
Zhang Y, Carney D, Henninot A, Srinivasan K. Novel High-Throughput Strategy for the Aqueous Solubility Assessment of Peptides and Proteins Exhibiting a Propensity for Gelation: Application to the Discovery of Novel Antibacterial Teixobactin Analogues. Mol Pharm 2020; 18:469-474. [PMID: 33290075 DOI: 10.1021/acs.molpharmaceut.0c00990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel high-throughput aqueous solubility assay was developed for peptides and proteins exhibiting a high gelling propensity (in this case, antibacterial teixobactin analogues). By integrating the assessment of gel formation, as indicated by an increase in the solution viscosity, into the peptide equilibrium solubility screening assay, we were able to estimate the "free-flowing solubility", which is defined as the concentration at which the peptide solution not only is fully dissolved but also is a liquid exhibiting ideal flowing characteristics. In this workflow, peptide solutions passing the turbidity assessment were further screened by viscosity measurements based on nanobead-assisted dynamic light scattering analysis in a 96-well plate. The method is able to effectively detect the initiation of peptide gelation and facilitate compound ranking based on their aqueous solubility. The application of such an approach helped confirm that the substitution of Ser3 in teixobactin led to desired physicochemical improvements and provided a focal point for further chemistry structure-activity relationship exploration.
Collapse
Affiliation(s)
- Ying Zhang
- DMPK, Ferring Research Institute Inc, 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Daniel Carney
- Molecular Design, Ferring Research Institute Inc, 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Antoine Henninot
- Molecular Design, Ferring Research Institute Inc, 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| | - Karthik Srinivasan
- DMPK, Ferring Research Institute Inc, 4245 Sorrento Valley Boulevard, San Diego, California 92121, United States
| |
Collapse
|
3
|
Lai R, Cai C, Wu W, Hu P, Wang Q. Exosomes derived from mouse inner ear stem cells attenuate gentamicin-induced ototoxicity in vitro through the miR-182-5p/FOXO3 axis. J Tissue Eng Regen Med 2020; 14:1149-1156. [PMID: 32593214 DOI: 10.1002/term.3089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Abstract
Gentamicin-induced cochlear hair cell ototoxicity, such as oxidative stress and apoptosis, could be attenuated by mouse inner ear stem cells (IESCs). However, it is still unclear whether such protective effects could be mediated by exosomes derived from IESCs (IESCs-ex). In the present study, HEI-OC1 cells were exposed to gentamicin (2 mM) to establish an ototoxicity model and further treated with exosomes isolated from miR-182-5p transferred or non-transferred IESCs. IESCs-ex improved HEI-OC1 cell viability, as assayed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide method, and alleviated the oxidative stress response induced by the gentamicin treatment, as confirmed by measuring the malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase levels. IESCs-ex increased relative miR-182-5p expression and decreased FOXO3 expression in the gentamicin-exposed HEI-OC1 cells. Furthermore, exosomes derived from miR-182-5p mimics that were pre-treated with IESCs could increase miR-182-5p and Bcl-2 expressions and decrease FOXO3 and Bax expressions in gentamicin-exposed HEI-OC1 cells. All of these results indicate that IESCs-ex could attenuate gentamicin-induced HEI-OC1 cell apoptosis and oxidative stress through the miR-182-5p/FOXO3 axis.
Collapse
Affiliation(s)
- Ruosha Lai
- Department of Otolaryngology and Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cuiyun Cai
- Department of Otolaryngology and Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weijing Wu
- Department of Otolaryngology and Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Hu
- Department of Otolaryngology and Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Wang
- Department of Otolaryngology and Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Gunjal VB, Thakare R, Chopra S, Reddy DS. Teixobactin: A Paving Stone toward a New Class of Antibiotics? J Med Chem 2020; 63:12171-12195. [PMID: 32520557 DOI: 10.1021/acs.jmedchem.0c00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antimicrobial resistance is a serious threat to human health worldwide, prompting research efforts on a massive scale in search of novel antibiotics to fill an urgent need for a remedy. Teixobactin, a macrocyclic depsipeptide natural product, isolated from uncultured bacteria (Eleftheria terrae), displayed potent activity against several Gram-positive pathogenic bacteria. The distinct pharmacological profile and interesting structural features of teixobactin with nonstandard amino acid (three d-amino acids and l-allo-enduracididine) residues attracted several research groups to work on this target molecule in search of novel antibiotics with new mechanism. Herein, we present a comprehensive and critical perspective on immense possibilities offered by teixobactin in the domain of drug discovery. Efforts made by various research groups since its isolation are discussed, highlighting the molecule's considerable potential with special emphasis on replacement of amino acids. Critical analysis of synthetic efforts, SAR studies, and the way forward are provided hereunder.
Collapse
Affiliation(s)
- Vidya B Gunjal
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritesh Thakare
- CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sidharth Chopra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - D Srinivasa Reddy
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
6
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|