1
|
de Oliveira AA, Carmo Silva LD, Neves BJ, Fiaia Costa VA, Muratov EN, Andrade CH, de Almeida Soares CM, Alves VM, Pereira M. Cheminformatics-driven discovery of hit compounds against Paracoccidioides spp. Future Med Chem 2023; 15:1553-1567. [PMID: 37727967 DOI: 10.4155/fmc-2022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Aims: The development of safe and effective therapies for treating paracoccidioidomycosis using computational strategies were employed to discover anti-Paracoccidioides compounds. Materials & methods: We 1) collected, curated and integrated the largest library of compounds tested against Paracoccidioides spp.; 2) employed a similarity search to virtually screen the ChemBridge database and select nine compounds for experimental evaluation; 3) performed an experimental evaluation to determine the minimum inhibitory concentration and minimum fungicidal concentration as well as cytotoxicity; and 4) employed computational tools to identify potential targets for the most active compounds. Seven compounds presented activity against Paracoccidioides spp. Conclusion: These compounds are new hits with a predicted mechanisms of action, making them potentially attractive to develop new compounds.
Collapse
Affiliation(s)
- Amanda Alves de Oliveira
- Institute of Tropical Pathology & Public Health, Federal University of Goiás, Goiânia, 74690-900, Brazil
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| | - Lívia do Carmo Silva
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | | | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology & Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Joao Pessoa, 58051-900, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling & Design, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | | | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology & Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- Laboratory for Molecular Modeling & Design, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| |
Collapse
|
2
|
Silva LDC, Rocha OB, Portis IG, Santos TG, Freitas e Silva KS, dos Santos Filho RF, Cunha S, Alonso A, Soares CMDA, Pereira M. Proteomic Profiling of Paracoccidioides brasiliensis in Response to Phenacylideneoxindol Derivative: Unveiling Molecular Targets and Pathways. J Fungi (Basel) 2023; 9:854. [PMID: 37623625 PMCID: PMC10455990 DOI: 10.3390/jof9080854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The treatment of paracoccidioidomycosis (PCM) is a challenge, and the discovery of new antifungal compounds is crucial. The phenacylideneoxindoles exhibited promising antifungal activity against Paracoccidioides spp., but their mode of action remains unknown. METHODS Through proteomic analysis, we investigated the effects of (E)-3-(2-oxo-2-phenylethylidene)indolin-2-one on P. brasiliensis. In addition, we investigated the metabolic alterations of P. brasiliensis in response to the compound. Furthermore, the effects of the compound on the membrane, ethanol production, and reactive oxygen species (ROS) production were verified. RESULTS We identified differentially regulated proteins that revealed significant metabolic reorganization, including an increase in ethanol production, suggesting the activation of alcoholic fermentation and alterations in the rigidity of fungal cell membrane with an increase of the ergosterol content and formation of ROS. CONCLUSIONS These findings enhance our understanding of the mode of action and response of P. brasiliensis to the investigated promising antifungal compound, emphasizing its potential as a candidate for the treatment of PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Olivia Basso Rocha
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Igor Godinho Portis
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Thaynara Gonzaga Santos
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Kleber Santiago Freitas e Silva
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | | | - Silvio Cunha
- Institute of Chemistry, Universidade Federal da Bahia, Salvador 40170-970, Brazil; (R.F.d.S.F.); (S.C.)
| | - Antônio Alonso
- Institute of Physics, Universidade Federal de Goiás, Goiânia 74690-900, Brazil;
| | - Célia Maria de Almeida Soares
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| | - Maristela Pereira
- Institute of Biological Sciences, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (O.B.R.); (I.G.P.); (T.G.S.); (K.S.F.e.S.); (C.M.d.A.S.); (M.P.)
| |
Collapse
|
3
|
New Methylcitrate Synthase Inhibitor Induces Proteolysis, Lipid Degradation and Pyruvate Excretion in Paracoccidioides brasiliensis. J Fungi (Basel) 2023; 9:jof9010108. [PMID: 36675929 PMCID: PMC9865517 DOI: 10.3390/jof9010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Paracoccidioidomycosis is a systemic mycosis caused by the inhalation of conidia of the genus Paracoccidioides. During the infectious process, fungal cells use several carbon sources, leading to the production of propionyl-CoA. The latter is metabolized by the methylcitrate synthase, a key enzyme of the methylcitrate cycle. We identified an inhibitor compound (ZINC08964784) that showed antifungal activity against P. brasiliensis. METHODS This work aimed to understand the fungal metabolic response of P. brasiliensis cells exposed to ZINC08964784 through a proteomics approach. We used a glucose-free medium supplemented with propionate in order to simulate the environment found by the pathogen during the infection. We performed pyruvate dosage, proteolytic assay, dosage of intracellular lipids and quantification of reactive oxygen species in order to validate the proteomic results. RESULTS The proteomic analysis indicated that the fungal cells undergo a metabolic shift due to the inhibition of the methylcitrate cycle and the generation of reactive species. Proteolytic enzymes were induced, driving amino acids into degradation for energy production. In addition, glycolysis and the citric acid cycle were down-regulated while ß-oxidation was up-regulated. The accumulation of pyruvate and propionyl-CoA led the cells to a state of oxidative stress in the presence of ZINC08964784. CONCLUSIONS The inhibition of methylcitrate synthase caused by the compound promoted a metabolic shift in P. brasiliensis damaging energy production and generating oxidative stress. Hence, the compound is a promising alternative for developing new strategies of therapies against paracoccidioidomycosis.
Collapse
|
4
|
Silva LC, Dos Santos Filho RF, de Oliveira AA, Martins FT, Cunha S, de Almeida Soares CM, Pereira M. 3-phenacylideneoxindoles as a new class of antifungal compounds against Paracoccidioides spp. Future Microbiol 2023; 18:93-105. [PMID: 36661071 DOI: 10.2217/fmb-2022-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aims: Considering the need to identify new compounds with antifungal action, the activity of five 3-phenacylideneoxindoles compounds was evaluated. Materials & methods: The compounds were synthesized, and their antifungal activity was elucidated through minimum inhibitory concentration tests and interaction assay with other antifungals. Potential targets of compounds were predicted in silico. Results: 3-phenacylideneoxindoles compounds inhibited fungal growth with minimum inhibitory concentration and minimum fungicidal concentration ranging from 3.05 to 12.26 μM. The compounds demonstrated high selectivity index and presented a synergistic effect with itraconazole. In silico prediction revealed the pentafunctional AROM polypeptide, enolase, superoxide dismutase, catalase and kinases as proteins targets of the compound 4a. Conclusion: The results demonstrate that 3-phenacylideneoxindoles is a potential new class of antifungal compounds for paracoccidioidomycosis treatment.
Collapse
Affiliation(s)
- Lívia C Silva
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | | | - Amanda A de Oliveira
- Institute of Tropical Pathology & Public Health, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Felipe T Martins
- Chemistry institute, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| | - Silvio Cunha
- Chemistry institute, Federal University of Bahia, Salvador, Bahia, 40170-115, Brazil
| | | | - Maristela Pereira
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, 74690-900, Brazil
| |
Collapse
|
5
|
Silva LDC, Silva KSFE, Rocha OB, Barbosa KLB, Rozada AMF, Gauze GDF, Soares CMDA, Pereira M. Proteomic Response of Paracoccidioides brasiliensis Exposed to the Antifungal 4-Methoxynaphthalene-N-acylhydrazone Reveals Alteration in Metabolism. J Fungi (Basel) 2022; 9:jof9010066. [PMID: 36675887 PMCID: PMC9865261 DOI: 10.3390/jof9010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Paracoccidioidomycosis is a neglected mycosis with a high socioeconomic impact that requires long-term treatment with antifungals that have limitations in their use. The development of antifungals targeting essential proteins that are present exclusively in the fungus points to a potentially promising treatment. Methods: The inhibitor of the enzyme homoserine dehydrogenase drove the synthesis of N'-(2-hydroxybenzylidene)-4-methoxy-1-naphthohydrazide (AOS). This compound was evaluated for its antifungal activity in different species of Paracoccidioides and the consequent alteration in the proteomic profile of Paracoccidioides brasiliensis. Results: The compound showed a minimal inhibitory concentration ranging from 0.75 to 6.9 μM with a fungicidal effect on Paracoccidioides spp. and high selectivity index. AOS differentially regulated proteins related to glycolysis, TCA, the glyoxylate cycle, the urea cycle and amino acid metabolism, including homoserine dehydrogenase. In addition, P. brasiliensis inhibited protein synthesis and stimulated reactive oxygen species in the presence of AOS. Conclusions: AOS is a promising antifungal agent for the treatment of PCM, targeting important metabolic processes of the fungus.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | | | | | | | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| |
Collapse
|
6
|
Khan K, Alhar MSO, Abbas MN, Abbas SQ, Kazi M, Khan SA, Sadiq A, Hassan SSU, Bungau S, Jalal K. Integrated Bioinformatics-Based Subtractive Genomics Approach to Decipher the Therapeutic Drug Target and Its Possible Intervention against Brucellosis. Bioengineering (Basel) 2022; 9:633. [PMID: 36354544 PMCID: PMC9687753 DOI: 10.3390/bioengineering9110633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2023] Open
Abstract
Brucella suis, one of the causative agents of brucellosis, is Gram-negative intracellular bacteria that may be found all over the globe and it is a significant facultative zoonotic pathogen found in livestock. It may adapt to a phagocytic environment, reproduce, and develop resistance to harmful environments inside host cells, which is a crucial part of the Brucella life cycle making it a worldwide menace. The molecular underpinnings of Brucella pathogenicity have been substantially elucidated due to comprehensive methods such as proteomics. Therefore, we aim to explore the complete Brucella suis proteome to prioritize the novel proteins as drug targets via subtractive proteo-genomics analysis, an effort to conjecture the existence of distinct pathways in the development of brucellosis. Consequently, 38 unique metabolic pathways having 503 proteins were observed while among these 503 proteins, the non-homologs (n = 421), essential (n = 350), drug-like (n = 114), virulence (n = 45), resistance (n = 42), and unique to pathogen proteins were retrieved from Brucella suis. The applied subsequent hierarchical shortlisting resulted in a protein, i.e., isocitrate lyase, that may act as potential drug target, which was finalized after the extensive literature survey. The interacting partners for these shortlisted drug targets were identified through the STRING database. Moreover, structure-based studies were also performed on isocitrate lyase to further analyze its function. For that purpose, ~18,000 ZINC compounds were screened to identify new potent drug candidates against isocitrate lyase for brucellosis. It resulted in the shortlisting of six compounds, i.e., ZINC95543764, ZINC02688148, ZINC20115475, ZINC04232055, ZINC04231816, and ZINC04259566 that potentially inhibit isocitrate lyase. However, the ADMET profiling showed that all compounds fulfill ADMET properties except for ZINC20115475 showing positive Ames activity; whereas, ZINC02688148, ZINC04259566, ZINC04232055, and ZINC04231816 showed hepatoxicity while all compounds were observed to have no skin sensitization. In light of these parameters, we recommend ZINC95543764 compound for further experimental studies. According to the present research, which uses subtractive genomics, proteins that might serve as therapeutic targets and potential lead options for eradicating brucellosis have been narrowed down.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi City 75270, Pakistan
| | | | - Muhammad Naseer Abbas
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar 25000, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, P.O. Box-2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
- Division of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, 2409 University Ave., Austin, TX 78712, USA
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi City 75270, Pakistan
| |
Collapse
|
7
|
Rocha OB, Freitas E Silva KS, de Carvalho Junior MAB, Moraes D, Alonso A, Alonso L, do Carmo Silva L, Soares CMA, Pereira M. Proteomic alterations in Paracoccidioides brasiliensis caused by exposure to curcumin. J Proteomics 2022; 266:104683. [PMID: 35835316 DOI: 10.1016/j.jprot.2022.104683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Paracoccidioides spp. are the etiological agent of paracoccidioidomycosis, a disease that causes skin lesions and affect the lungs and other organs. The current management of the disease is long and has several side effects that often lead the patient to give up the treatment, sequelae and even death. The search for new forms of treatment that minimize these drawbacks is very important. Thus, natural compounds are targets of great interest. Curcumin is one of the main components of the tubers of Curcuma longa, presenting medicinal effects well described in the literature, including the antifungal effect on Paracocidioides brasiliensis. Nevertheless, the mechanisms related to the antifungal effect of such compound are still unknown, so the objective of the present research is to understand what changes occur in the metabolism of P. brasiliensis after exposure to curcumin and to identify the main targets of the compound. Proteomic analysis as based on nanoUPLC-MS analysis and the functional classification of the identified proteins. The main metabolic processes that were being regulated were biologically validated through assays such as fluorescence microscopy, EPR and phagocytosis. Proteomic analysis revealed that curcumin regulates several metabolic processes of the fungus, including important pathways for energy production, such as the glycolytic pathway, beta oxidation and the glyoxylate cycle. Protein synthesis was down-regulated in fungi exposed to curcumin. The electron transport chain and the tricarboxylic acid cycle were also down-regulated, indicating that both the mitochondrial membrane and the mitochondrial activity were compromised. Plasma membrane and cell wall structure were altered following exposure to the compound. The fungus' ability to survive the phagocytosis process by alveolar macrophages was reduced. Thus, curcumin interferes with several metabolic pathways in the fungus that causes paracoccidioidomycosis. BIOLOGICAL SIGNIFICANCE: The challenges presented by the current treatment of paracoccidioidomycosis often contributing to patients' withdrawal from treatment, leading to sequelae or even death. Thus, the search for new treatment options against this disease is growing. The discovery that curcumin is active against Paracoccidioides was previously reported by our study group. Here, we clarify how the compound acts on the fungus causing its growth inhibition and decreased viability. Understanding the mechanisms of action of curcumin on P. brasiliensis elucidates how we can seek new alternatives and which metabolic pathways and molecular targets we should focus on in this incessant search to bring the patient a treatment with fewer adverse effects.
Collapse
Affiliation(s)
- Olivia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | | | - Dayane Moraes
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Antônio Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Laís Alonso
- Institute of Physics, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Celia Maria Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Dai JK, Dan WJ, Wan JB. Natural and synthetic β-carboline as a privileged antifungal scaffolds. Eur J Med Chem 2021; 229:114057. [PMID: 34954591 DOI: 10.1016/j.ejmech.2021.114057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023]
Abstract
The discovery of antifungal agents with novel structure, broad-spectrum, low toxicity, and high efficiency has been the focus of medicinal chemists. Over the past decades, β-carboline scaffold has attracted extensive attention in the scientific community due to its potent and diverse biological activities with nine successfully marketed β-carboline-based drugs. In this review, we summarized the current states and advances in the antifungal activity of natural and synthetic β-carbolines. Additionally, the structure-activity relationships and their antifungal mechanisms targeting biofilm, cell wall, cell membrane, and fungal intracellular targets were also systematically discussed. In summary, β-carbolines have the great potential to develop new efficient scaffolds to combat fungal infections.
Collapse
Affiliation(s)
- Jiang-Kun Dai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; College of Veterinary Medicine, Northwest A&F University, Shaanxi, China; School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Wen-Jia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
9
|
Rocha OB, do Carmo Silva L, de Carvalho Júnior MAB, de Oliveira AA, de Almeida Soares CM, Pereira M. In vitro and in silico analysis reveals antifungal activity and potential targets of curcumin on Paracoccidioides spp. Braz J Microbiol 2021; 52:1897-1911. [PMID: 34324170 PMCID: PMC8578512 DOI: 10.1007/s42770-021-00548-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The search for new compounds with activity against Paracoccidioides, etiologic agents of Paracoccidioidomycosis (PCM), is extremely necessary due to the current scenario of the available therapeutic arsenal. Treatment is restricted to three classes of antifungals with side effects. Curcumin is a polyphenol with antifungal effects that is extracted from Curcuma longa. The present work aimed to evaluate the activity of curcumin in different species of Paracoccidioides and to evaluate the potential molecular targets of curcumin using computational strategies. In addition, interactions with classic antifungals used in the treatment of PCM were evaluated. Curcumin inhibits the growth of Paracoccidioides spp. exerting a fungicidal effect. The combination of curcumin with amphotericin B, co-trimoxazole, and itraconazole showed a synergistic or additive interaction. Molecular targets as superoxide dismutase, catalase, and isocitrate lyase were proposed based on in silico approaches. Curcumin affects the fungal plasma membrane and increases the production of reactive oxygen species. Therefore, curcumin is a good alternative for the treatment of PCM.
Collapse
Affiliation(s)
- Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Marcos Antonio Batista de Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, ICB2, Sala 206, Goiânia, Goiás, 74690-900, Brazil.
| |
Collapse
|
10
|
Lima RM, Freitas E Silva KS, Silva LDC, Ribeiro JFR, Neves BJ, Brock M, Soares CMDA, da Silva RA, Pereira M. A structure-based approach for the discovery of inhibitors against methylcitrate synthase of Paracoccidioides lutzii. J Biomol Struct Dyn 2021; 40:9361-9373. [PMID: 34060981 DOI: 10.1080/07391102.2021.1930584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raisa Melo Lima
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Lívia do Carmo Silva
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | | - Bruno Junior Neves
- Faculty of Pharmacy, Laboratory for Molecular Modeling and Drug Design, Federal University of Goiás, Goiânia, Brazil
| | - Matthias Brock
- School of Life Science, Fungal Biology Group, University of Nottingham, Nottingham, UK
| | | | - Roosevelt Alves da Silva
- Collaborative Nucleus of Biosystems, Institute of Exact Sciences, Federal University of Jataí, Jataí, Brazil
| | - Maristela Pereira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil.,Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
11
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|
12
|
Song P, Wang ML, Zheng QY, Wang P, Zhu GP. Isocitrate dehydrogenase 1 from Acinetobacter baummanii (AbIDH1) enzymatic characterization and its regulation by phosphorylation. Biochimie 2020; 181:77-85. [PMID: 33290880 DOI: 10.1016/j.biochi.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022]
Abstract
Acinetobacter baumannii encodes all enzymes required in the tricarboxylic acid (TCA) cycle and glyoxylate bypass except for isocitrate dehydrogenase kinase/phosphatase (IDHKP), which can phosphorylate isocitrate dehydrogenase (IDH) at a substrate-binding Ser site and control the carbon flux in enterobacteria, such as Escherichia coli. The potential kinase was not successfully pulled down from A. baumannii cell lyase; therefore, whether the IDH 1 from A. baumannii (AbIDH1) can be phosphorylated to regulate intracellular carbon flux has not been clarified. Herein, the AbIDH1 gene was cloned, the encoded protein was expressed and purified to homogeneity, and phosphorylation and enzyme kinetics were evaluated in vitro. Gel filtration and SDS-PAGE analyses showed that AbIDH1 is an 83.5 kDa homodimer in solution. The kinetics showed that AbIDH1 is a fully active NADP-dependent enzyme. The Michaelis constant Km is 46.6 (Mn2+) and 18.1 μM (Mg2+) for NADP+ and 50.5 (Mn2+) and 65.4 μM (Mg2+) for the substrate isocitrate. Phosphorylation experiments in vitro indicated that AbIDH1 is a substrate for E. coli IDHKP. The activity of AbIDH1 treated with E. coli IDHKP immediately decreased by 80% within 9 min. Mass spectrometry indicated that the conserved Ser113 of AbIDH1 is phosphorylated. Continuous phosphorylation-mimicking mutants (Ser113Glu and Ser113Asp) lack almost all enzymatic activity. Side-chain mutations at Ser113 (Ser113Thr, Ser113Ala, Ser113Gly and Ser113Tyr) remarkably reduce the enzymatic activity. Understanding the potential of AbIDH1 phosphorylation enables further investigations of the AbIDH1 physiological functions in A. baumannii.
Collapse
Affiliation(s)
- Ping Song
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241000, Anhui, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Meng-Li Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Qing-Yang Zheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
13
|
Interaction of Isocitrate Lyase with Proteins Involved in the Energetic Metabolism in Paracoccidioides lutzii. J Fungi (Basel) 2020; 6:jof6040309. [PMID: 33238437 PMCID: PMC7712234 DOI: 10.3390/jof6040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background: Systemic mycosis is a cause of death of immunocompromised subjects. The treatment directed to evade fungal pathogens shows severe limitations, such as time of drug exposure and side effects. The paracoccidioidomycosis (PCM) treatment depends on the severity of the infection and may last from months to years. Methods: To analyze the main interactions of Paracoccidioides lutzii isocitrate lyase (ICL) regarding the energetic metabolism through affinity chromatography, we performed blue native PAGE and co-immunoprecipitation to identify ICL interactions. We also performed in silico analysis by homology, docking, hot-spot prediction and contact preference analysis to identify the conformation of ICL complexes. Results: ICL interacted with 18 proteins in mycelium, 19 in mycelium-to-yeast transition, and 70 in yeast cells. Thirty complexes were predicted through docking and contact preference analysis. ICL has seven main regions of interaction with protein partners. Conclusions: ICL seems to interfere with energetic metabolism of P. lutzii, regulating aerobic and anaerobic metabolism as it interacts with proteins from glycolysis, gluconeogenesis, TCA and methylcitrate cycles, mainly through seven hot-spot residues.
Collapse
|
14
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
15
|
da Silva IR, Parise MR, Pereira M, da Silva RA. Prospecting for new catechol- O-methyltransferase (COMT) inhibitors as a potential treatment for Parkinson's disease: a study by molecular dynamics and structure-based virtual screening. J Biomol Struct Dyn 2020; 39:5872-5891. [PMID: 32691671 DOI: 10.1080/07391102.2020.1794963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative, chronic, and progressive disease, common in the elderly. The catechol-O-methyltransferase (COMT) is a monomeric enzyme involved in dopamine (DA) degradation, the neurotransmitter in deficit in patients with PD. The reference treatment of PD consists of levodopa (L-dopa) administration, which is the precursor of DA. The inhibition of COMT is an adjuvant treatment in PD since it keeps DA levels constant. The goal of this study was to identify drug candidates capable of inhibiting COMT for the treatment of PD and identify important fragments of these molecules. Initially, we analyzed the flexibility of COMT and defined its main conformations in solution regarding the absence (system I) and presence of the S-adenosyl-L-methionine (SAM) cofactor (system II) through molecular dynamics (MD) simulations. Two regions in these structures were selected for molecular docking, firstly the entire cavity where the cofactor and substrates are bound and secondly the specific biding region of the enzyme substrates. Based on the conformations of the MD, the virtual screening (VS) was performed against FDA Approved and Zinc Natural Products databases aiming at the selection of the best compounds. Subsequently, the absorption, distribution, metabolization, excretion, and toxicity (ADMET) properties, as well as drug-score and drug-likeness indexes of the most promising compounds were analyzed. After a detailed analysis of the compounds selected by structure-based VS, it was possible to highlight the fragments most frequently involved in their stability: 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole, 9H-Benz(c)indole(3,2,1-ij)(1,5)naphthyridin-9-one and (10R,13S)-10,13-dimethyl-1,2,6,7,8,9,11,12,14,15,16,17dodecahydrocyclopenta[a]phenanthren-3-one. The identification of these potential fragments is essential for the prospection of more specific inhibitors against COMT using the technique of Fragment-based lead discovery (FBLD). Besides, this study allowed us to identify the potential COMT inhibitors through a complete understanding of molecular-level interactions based on the flexibility of this protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Michelle Rocha Parise
- Laboratório de Farmacologia e Fisiologia, Universidade Federal de Jataí, Jataí, Brasil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Universidade Federal de Goiás, Goiânia, Brasil
| | | |
Collapse
|
16
|
de Lima Menezes G, da Silva RA. Identification of potential drugs against SARS-CoV-2 non-structural protein 1 (nsp1). J Biomol Struct Dyn 2020; 39:5657-5667. [PMID: 32657643 PMCID: PMC7443570 DOI: 10.1080/07391102.2020.1792992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-structural protein 1 (nsp1) is found in all Betacoronavirus genus, an important viral group that causes severe respiratory
human diseases. This protein has significant role in pathogenesis and it is considered a
probably major virulence factor. As it is absent in humans, it becomes an interesting
target of study, especially when it comes to the rational search for drugs, since it
increases the specificity of the target and reduces possible adverse effects that may be
caused to the patient. Using approaches in silico we seek to
study the behavior of nsp1 in solution to obtain its most stable conformation and find
possible drugs with affinity to all of them. For this purpose, complete model of nsp1 of
SARS-CoV-2 were predicted and its stability analyzed by molecular dynamics simulations in
five different replicas. After main pocket validation using two control drugs and the main
conformations of nsp1, molecular docking based on virtual screening were performed to
identify novel potential inhibitors from DrugBank database. It has been found 16 molecules
in common to all five nsp1 replica conformations. Three of them was ranked as the best
compounds among them and showed better energy score than control molecules that have
in vitro activity against nsp1 from SARS-CoV-2. The
results pointed out here suggest new potential drugs for therapy to aid the rational drug
search against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
|