1
|
Vignolini T, Capitanio M, Caldini C, Gardini L, Pavone FS. Highly inclined light sheet allows volumetric super-resolution imaging of efflux pumps distribution in bacterial biofilms. Sci Rep 2024; 14:12902. [PMID: 38839922 PMCID: PMC11153600 DOI: 10.1038/s41598-024-63729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria. We propose an optical method to quantify the expression level of the AcrAB-TolC pump within the biofilm volume at the sub-cellular level, with single-molecule sensitivity. Through a combination of super-resolution PALM with single objective light sheet and precision genome editing, we can directly quantify the spatial distribution of endogenous AcrAB-TolC pumps expressed in both planktonic bacteria and, importantly, within the bacterial biofilm volume. We observe a gradient of pump density within the biofilm volume and over the course of biofilm maturation. Notably, we propose an optical method that could be broadly employed to achieve volumetric super-resolution imaging of thick samples.
Collapse
Affiliation(s)
- T Vignolini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy.
- Parasite RNA Biology Group, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| | - M Capitanio
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - C Caldini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - L Gardini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
- National Institute of Optics, National Research Council, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
| | - F S Pavone
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Schuster S, Vavra M, Wirth DAN, Kern WV. Comparative reassessment of AcrB efflux inhibitors reveals differential impact of specific pump mutations on the activity of potent compounds. Microbiol Spectr 2024; 12:e0304523. [PMID: 38170977 PMCID: PMC10846202 DOI: 10.1128/spectrum.03045-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Multidrug resistance poses global challenges, particularly with regard to Gram-negative bacterial infections. In view of the lack of new antibiotics, drug enhancers, such as efflux pump inhibitors (EPIs), have increasingly come into focus. A number of chemically diverse agents have been reported to inhibit AcrB, the main multidrug transporter in Escherichia coli, and homologs in other Gram-negative bacteria. However, due to the often varying methodologies used for their characterization, results remain difficult to compare. In this study, using a defined selection of antibiotics known to be efflux substrates, we reevaluated 38 published compounds for their in vitro EPI activity. When examined in an E. coli strain with stable wild-type AcrB overexpression, we found 17 compounds showing at least fourfold enhancing potency with more than 2 out of 10 test drugs (belonging to eight antibiotic classes). Pyranopyridines (MBX series) were confirmed as the most potent inhibitors among agents reported so far. A new and surprising finding was that their activity, unlike that of the pyridylpiperazine EPI BDM88855, was highly susceptible to the AcrB double-mutation G141D_N282Y, which had previously been shown to diminish drug enhancing of 1-(1-naphthylmethyl)piperazine in a predominantly substrate-specific manner. Conversely, transmembrane region mutation V411A, while eliminating the drug potentiating of the BDM compound, did not decrease the activity of the MBX EPIs. Besides comparative reassessment of the potency of reported EPIs, the study demonstrated the usefulness of mutagenesis approaches providing tools for an initial discrimination of EPIs regarding their mode of function.IMPORTANCEInfections with difficult-to-treat multidrug-resistant bacteria pose an urgent global threat in view of the stagnating development of new antimicrobial substances. Efflux pumps in Gram-negative pathogens are known to substantially contribute to multidrug resistance making them promising targets for chemotherapeutic interventions to restore the efficacy of conventional antibiotics. In the present study, the in vitro activity of previously reported efflux pump inhibitors was reassessed using standardized conditions. Relevant drug sensitizing activity could be proven for almost half of the tested compounds. Further characterization of potent inhibitors was achieved by investigating the impact of specific efflux pump mutations. A double-mutation previously known to decrease the activity of the arylpiperazine 1-(1-naphthylmethyl)piperazine also impaired that of the highly efficient pyranopyridine efflux pump inhibitors. Our findings provide direct comparability of reported efflux pump inhibitors and contribute to the elucidation of their mode of action.
Collapse
Affiliation(s)
- Sabine Schuster
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Martina Vavra
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Dave A. N. Wirth
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Winfried V. Kern
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany
| |
Collapse
|
3
|
Pai L, Patil S, Liu S, Wen F. A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance. Front Cell Infect Microbiol 2023; 13:1327069. [PMID: 38188636 PMCID: PMC10770264 DOI: 10.3389/fcimb.2023.1327069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Biofilms are a common survival strategy employed by bacteria in healthcare settings, which enhances their resistance to antimicrobial and biocidal agents making infections difficult to treat. Mechanisms of biofilm-induced antimicrobial resistance involve reduced penetration of antimicrobial agents, increased expression of efflux pumps, altered microbial physiology, and genetic changes in the bacterial population. Factors contributing to the formation of biofilms include nutrient availability, temperature, pH, surface properties, and microbial interactions. Biofilm-associated infections can have serious consequences for patient outcomes, and standard antimicrobial therapies are often ineffective against biofilm-associated bacteria, making diagnosis and treatment challenging. Novel strategies, including antibiotics combination therapies (such as daptomycin and vancomycin, colistin and azithromycin), biofilm-targeted agents (such as small molecules (LP3134, LP3145, LP4010, LP1062) target c-di-GMP), and immunomodulatory therapies (such as the anti-PcrV IgY antibodies which target Type IIIsecretion system), are being developed to combat biofilm-induced antimicrobial resistance. A multifaceted approach to diagnosis, treatment, and prevention is necessary to address this emerging problem in healthcare settings.
Collapse
Affiliation(s)
- Liu Pai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Casalone E, Vignolini T, Braconi L, Gardini L, Capitanio M, Pavone FS, Giovannelli L, Dei S, Teodori E. Characterization of substituted piperazines able to reverse MDR in Escherichia coli strains overexpressing resistance-nodulation-cell division (RND) efflux pumps. J Antimicrob Chemother 2021; 77:413-424. [PMID: 34747445 DOI: 10.1093/jac/dkab388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND MDR in bacteria is threatening to public health. Overexpression of efflux pumps is an important cause of MDR. The co-administration of antimicrobial drugs and efflux pump inhibitors (EPIs) is a promising approach to address the problem of MDR. OBJECTIVES To identify new putative EPIs and to characterize their mechanisms of action. METHODS The effects of four selected piperazine derivatives on resistance-nodulation-cell division (RND) pumps was evaluated in Escherichia coli strains overexpressing or not expressing RND pumps by assays aimed at evaluating antibiotic potentiation, membrane functionality, ethidium bromide accumulation and AcrB expression. The cytotoxicity of selected piperazines towards primary cultures of human dermal fibroblasts was also investigated. RESULTS Four molecules enhanced levofloxacin activity against strains overexpressing RND efflux pumps (AcrAB-TolC and AcrEF-TolC), but not against RND pump-deficient strains. They had little effects on membrane potential. Molecule 4 decreased, whereas the other three increased, membrane permeability compared with untreated control cells. The four molecules showed differences in the specificity of interaction with RND efflux pumps, by inactivating the transport of one or more antibiotics, and in the levels of ethidium bromide accumulation and of acrB expression inhibition. CONCLUSIONS Piperazine derivatives are good candidates as inhibitors of RND efflux pumps. They decreased the activity of RND pumps by mixed mechanisms of action. Small structural differences among the molecules can be critical in defining their behaviour.
Collapse
Affiliation(s)
- Enrico Casalone
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmaceutical and Nutraceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Gardini
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Capitanio
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco S Pavone
- LENS-European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Lisa Giovannelli
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Silvia Dei
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmaceutical and Nutraceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neurosciences, Psychology, Drug Research and Child's Health-Section of Pharmaceutical and Nutraceutical Sciences, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|