1
|
Sharma J, Sharma D, Singh A, Sunita K. Colistin Resistance and Management of Drug Resistant Infections. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:4315030. [PMID: 36536900 PMCID: PMC9759378 DOI: 10.1155/2022/4315030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 09/19/2023]
Abstract
Colistin resistance is a globalized sensible issue because it has been considered a drug of the last-line resort to treat drug-resistant bacterial infections. The product of the mobilized colistin resistance (mcr) gene and its variants are the significant causes of colistin resistance, which is emerging due to the frequent colistin use in veterinary, and these genes circulate among the bacterial community. Apart from mcr genes, some other intrinsic genes and proteins are also involved in colistin resistance. Researchers focus on the most advanced genomics (whole genome sequencing), proteomics, and bioinformatics approaches to explore the question of colistin resistance. To combat colistin resistance, researchers developed various strategies such as the development of newer drugs, the repurposing of existing drugs, combinatorial treatment by colistin with other drugs, a nano-based approach, photodynamic therapy, a CRISPRi-based strategy, and a phage-based strategy. In this timeline review, we have discussed the development of colistin resistance and its management in developing countries.
Collapse
Affiliation(s)
- Juhi Sharma
- School of Life Science, Jaipur National University, Jaipur, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, Delhi, India
- Department of Microbiology, Lady Hardinge Medical College, Delhi, India
| | - Amit Singh
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, Delhi, India
- Department of Microbiology, Central University of Punjab, Bathinda, India
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Alves de Lima LV, da Silva MF, Concato VM, Rondina DBL, Zanetti TA, Felicidade I, Areal Marques L, Lepri SR, Simionato AS, Filho GA, Coatti GC, Mantovani MS. DNA damage and reticular stress in cytotoxicity and oncotic cell death of MCF-7 cells treated with fluopsin C. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:896-911. [PMID: 35950849 DOI: 10.1080/15287394.2022.2108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluopsin C is an antibiotic compound derived from secondary metabolism of different microorganisms, which possesses antitumor, antibacterial, and antifungal activity. Related to fluopsin C antiproliferative activity, the aim of this study was to examine the following parameters: cytotoxicity, genotoxicity, cell cycle arrest, cell death induction (apoptosis), mitochondrial membrane potential (MMP), colony formation, and mRNA expression of genes involved in adaptive stress responses and cellular death utilizing a monolayer. In addition, a three-dimensional cell culture was used to evaluate the effects on growth of tumor spheroids. Fluopsin C was cytotoxic (1) producing cell division arrest in the G1 phase, (2) elevating expression of mRNA of the CDKN1A gene and (3) decrease in expression of mRNA H2AFX gene. Further, fluopsin C enhanced DNA damage as evidenced by increased expression of mRNA of GADD45A and GPX1 genes, indicating that reactive oxygen species (ROS) may be involved in the observed genotoxic response. Reticulum stress was also detected as noted from activation of the ribonuclease inositol-requiring protein 1 (IRE1) pathway, since a rise in mRNA expression of the ERN1 and TRAF2 genes was observed. During the cell death process, an increase in mRNA expression of the BBC3 gene was noted, indicating participation of this antibiotic in oncotic (ischemic) cell death. Data thus demonstrated for the first time that fluopsin C interferes with the volume of tumor spheroids, in order to attenuate their growth. Our findings show that fluopsin C modulates essential molecular processes in response to stress and cell death.
Collapse
Affiliation(s)
- Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Virginia Marcia Concato
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Lilian Areal Marques
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Ane Stéfano Simionato
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | - Galdino Andrade Filho
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| | | | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Paraná, Brazil
| |
Collapse
|