1
|
White L, Hammond R, Shorten RJ, Derrick JP. An investigation of scattered light integrating collector technology for rapid blood culture sensitivity testing. J Med Microbiol 2024; 73:001896. [PMID: 39360708 PMCID: PMC11448337 DOI: 10.1099/jmm.0.001896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction. Sepsis rates are increasing, with Gram-negative organisms representing a large proportion of bloodstream infections. Rapid antibiotic administration, alongside diagnostic investigations, is required for the effective management of these patients.Gap statement. Current diagnostics take ~48 h for a final report; therefore, rapid diagnostics are required.Aim. This study investigated a novel antibiotic sensitivity method, the scattered light integrating collector (SLIC), combined with a rapid identification method using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) technology to determine if an accurate identification and susceptibility result can be provided within 4 h of a positive blood culture report.Methodology. A total of 47 blood cultures containing Gram-negative bacteria from 46 patients were processed using the MALDI-TOF Biotyper Sepsityper for identification directly from the blood and the SLIC instrument for susceptibility testing. All organisms were also tested using the current standard workflow used in the host laboratory. Categorical agreement (CA), major errors (MaEs) and very major errors (VMEs) were determined.Results. SLIC produced susceptibility results with a 71.9% CA, 30.6% MaE and 17.5% VME. The median difference in time to the final result was 44.14 (43 : 05-45 : 15) h earlier compared to the current method.Conclusion. We conclude that SLIC was unable to consistently provide sufficiently accurate antibiotic susceptibility results compared to the current standard method.
Collapse
Affiliation(s)
- L. White
- Department of Microbiology, Lancashire Teaching Hospitals NHS Foundation Trust, England, UK
| | - R. Hammond
- Infection and Global Health Division, School of Medicine, University of St Andrews, St Andrews, UK
| | - R. J. Shorten
- Department of Microbiology, Lancashire Teaching Hospitals NHS Foundation Trust, England, UK
- Honorary Senior Lecturer, University of Manchester, Manchester, UK
| | - J. P. Derrick
- School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
MacVane SH, Dwivedi HP. Evaluating the impact of rapid antimicrobial susceptibility testing for bloodstream infections: a review of actionability, antibiotic use and patient outcome metrics. J Antimicrob Chemother 2024; 79:i13-i25. [PMID: 39298359 PMCID: PMC11412245 DOI: 10.1093/jac/dkae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Antimicrobial susceptibility testing (AST) is a core function of the clinical microbiology laboratory and is critical to the management of patients with bloodstream infections (BSIs) to facilitate optimal antibiotic therapy selection. Recent technological advances have resulted in several rapid methods for determining susceptibility direct from positive blood culture that can provide turnaround times in under 8 h, which is considerably shorter than conventional culture-based methods. As diagnostic results do not directly produce a medical intervention, actionability is a primary determinant of the effect these technologies have on antibiotic use and ultimately patient outcomes. Randomized controlled trials and observational studies consistently show that rapid AST significantly reduces time to results and improves antimicrobial therapy for patients with BSI across various methods, patient populations and organisms. To date, the clinical impact of rapid AST has been demonstrated in some observational studies, but randomized controlled trials have not been sufficiently powered to validate many of these findings. This article reviews various metrics that have been described in the literature to measure the impact of rapid AST on actionability, antibiotic exposure and patient outcomes, as well as highlighting how implementation and workflow processes can affect these metrics.
Collapse
Affiliation(s)
- Shawn H MacVane
- Global Medical Affairs-Microbiology, bioMérieux, Inc., Hazelwood, MO, USA
| | - Hari P Dwivedi
- Global Medical Affairs-Microbiology, bioMérieux, Inc., Hazelwood, MO, USA
| |
Collapse
|
3
|
Ventres JJ, Ting MH, Parente DM, Rogers R, Norris AM, Benitez G, Shehadeh F, Bobenchik AM, Mylonakis E, Chapin KC, Cunha CB. Combination of a Rapid Diagnostic Assay and Antimicrobial Stewardship Intervention for Gram-Negative Bacteremia. Open Forum Infect Dis 2024; 11:ofae477. [PMID: 39263216 PMCID: PMC11389609 DOI: 10.1093/ofid/ofae477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Traditional blood cultures for gram-negative bacteremia can take up to 72 hours or more to return results, prolonging the duration of empiric broad-spectrum intravenous antibiotics. The Accelerate Pheno system provides rapid identification and susceptibilities for blood cultures in gram-negative bacteremia. Current data on its clinical utility are mixed overall, so the system requires further research. Methods A multicenter, retrospective quasi-experimental study was conducted comparing the Accelerate Pheno rapid diagnostic system with antimicrobial stewardship intervention and traditional blood cultures alone. Results A total of 264 patients with blood cultures with gram-negative bacteria growth were included in the final analysis (102 pre-intervention, 162 post-intervention). The antimicrobial stewardship team made 364 recommendations in 152/162 (93.8%) patients in the post group. Duration of intravenous therapy was shorter (P < .001) for the post-intervention group (median, 4.0 days) compared with the pre-intervention group (median, 7.5 days). Hospital length of stay was also shorter (P < .001) for the post-intervention group (median, 5.1 days) compared with the pre-intervention group (median, 7.0 days). Readmission rates within 30 days were reduced (P = .042) post-intervention (13.0%) compared with pre-intervention (22.6%). In the post-intervention group, a larger proportion of patients were transitioned to oral therapy at any point (126/162, 77.8%) compared with pre-intervention (62/102, 60.8%; P < .001). Conclusions These results suggest that the Accelerate Pheno system, with active review and intervention by a multidisciplinary antimicrobial stewardship team, is a useful tool in improving both patient-centric and antimicrobial stewardship outcomes.
Collapse
Affiliation(s)
- Julian J Ventres
- Department of Pharmacy, The Miriam Hospital, Providence, Rhode Island, USA
| | - Michelle H Ting
- Department of Pharmacy, Banner University Medical Center-Phoenix, Phoenix, Arizona, USA
| | - Diane M Parente
- Department of Pharmacy, The Miriam Hospital, Providence, Rhode Island, USA
- Division of Infectious Diseases, Brown University, Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Ralph Rogers
- Division of Infectious Diseases, Brown University, Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Ashlyn M Norris
- Division of Infectious Diseases, Brown University, Warren Alpert Medical School, Providence, Rhode Island, USA
- Department of Pharmacy, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Gregorio Benitez
- Division of Infectious Diseases, Brown University, Warren Alpert Medical School, Providence, Rhode Island, USA
| | - Fadi Shehadeh
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - April M Bobenchik
- Clinical Pathology Division, Penn State Milton Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Pathology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | | | - Kimberle C Chapin
- Department of Pathology, Brown University, Warren Alpert Medical School, Providence, Rhode Island, USA
- Deepull, Barcelona, Spain
| | - Cheston B Cunha
- Division of Infectious Diseases, Brown University, Warren Alpert Medical School, Providence, Rhode Island, USA
- Infectious Disease Division, Rhode Island Hospital and The Miriam Hospital, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Hattab S, Ma AH, Tariq Z, Vega Prado I, Drobish I, Lee R, Yee R. Rapid Phenotypic and Genotypic Antimicrobial Susceptibility Testing Approaches for Use in the Clinical Laboratory. Antibiotics (Basel) 2024; 13:786. [PMID: 39200086 PMCID: PMC11351821 DOI: 10.3390/antibiotics13080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
The rapid rise in increasingly resistant bacteria has become a major threat to public health. Antimicrobial susceptibility testing (AST) is crucial in guiding appropriate therapeutic decisions and infection prevention practices for patient care. However, conventional culture-based AST methods are time-consuming and labor-intensive. Therefore, rapid AST approaches exist to address the delayed gap in time to actionable results. There are two main types of rapid AST technologies- phenotypic and genotypic approaches. In this review, we provide a summary of all commercially available rapid AST platforms for use in clinical microbiology laboratories. We describe the technologies utilized, performance characteristics, acceptable specimen types, types of resistance detected, turnaround times, limitations, and clinical outcomes driven by these rapid tests. We also discuss crucial factors to consider for the implementation of rapid AST technologies in a clinical laboratory and what the future of rapid AST holds.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Adrienne H. Ma
- Department of Pharmacy, Valley View Hospital, Glenwood Springs, CO 81647, USA;
| | - Zoon Tariq
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ilianne Vega Prado
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| | - Ian Drobish
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rachel Lee
- Division of Infectious Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA;
| | - Rebecca Yee
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (S.H.); (Z.T.); (I.V.P.)
| |
Collapse
|
5
|
Gillespie SH, Hammond RJH. Rapid Drug Susceptibility Testing to Preserve Antibiotics. Methods Mol Biol 2024; 2833:129-143. [PMID: 38949707 DOI: 10.1007/978-1-0716-3981-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibiotic resistance is a global challenge likely to cost trillions of dollars in excess costs in the health system and more importantly, millions of lives every year. A major driver of resistance is the absence of susceptibility testing at the time a healthcare worker needs to prescribe an antimicrobial. The effect is that many prescriptions are unintentionally wasted and expose mutable organisms to antibiotics increasing the risk of resistance emerging. Often simplistic solutions are applied to this growing issue, such as a naïve drive to increase the speed of drug susceptibility testing. This puts a spotlight on a technological solution and there is a multiplicity of such candidate DST tests in development. Yet, if we do not define the necessary information and the speed at which it needs to be available in the clinical decision-making progress as well as the necessary integration into clinical pathways, then little progress will be made. In this chapter, we place the technological challenge in a clinical and systems context. Further, we will review the landscape of some promising technologies that are emerging and attempt to place them in the clinic where they will have to succeed.
Collapse
Affiliation(s)
- Stephen H Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK.
| | - Robert J H Hammond
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
6
|
Migliorisi G, Calvo M, Collura A, Di Bernardo F, Perez M, Scalia G, Stefani S. The Rapid Phenotypic Susceptibility Testing in Real-Life Experience: How the MIC Values Impact on Sepsis Fast Diagnostic Workflow. Diagnostics (Basel) 2023; 14:56. [PMID: 38201365 PMCID: PMC10802849 DOI: 10.3390/diagnostics14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The MIC value definition faithfully reflects antimicrobial sensitivity, profoundly impacting the infection's clinical outcome. Our study aimed to evaluate the Accelerate PhenoTM System in defining the importance of fast phenotypic susceptibility data. A number of 270 monomicrobial samples simultaneously underwent standard procedures and fast protocols after a contemporary Gram stain. Finally, we provided Turn-around Time (TAT) and statistical evaluations. The fast technology required a medium value of 7 h to complete ID and AST profiles. Although there were some spectrum limitations, it revealed an optimal success rate in microbial identification directly from positive blood cultures. The Gram-negative AST reached a 98.9% agreement between the Accelerate Pheno™ System and the standard method. In addition, the Gram-positive AST gathered a 98.7% agreement comparing the same systems. The chance to rapidly provide precise MIC values is one of the last frontiers in clinical microbiology, especially in high-prevalence antimicrobial resistance areas.
Collapse
Affiliation(s)
- Giuseppe Migliorisi
- U.O.C. Laboratory Analysis A.O.U. “Policlinico—San Marco”, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis A.O.U. “Policlinico—San Marco”, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (S.S.)
| | - Antonina Collura
- U.O.C. Clinical Microbiology, “Civico-Di Cristina-Benfratelli” Hospital, Piazza Nicola Leotta 4, 90127 Palermo, Italy
| | - Francesca Di Bernardo
- U.O.C. Clinical Microbiology, “Civico-Di Cristina-Benfratelli” Hospital, Piazza Nicola Leotta 4, 90127 Palermo, Italy
| | - Marianna Perez
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Guido Scalia
- U.O.C. Laboratory Analysis A.O.U. “Policlinico—San Marco”, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (S.S.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Stefania Stefani
- U.O.C. Laboratory Analysis A.O.U. “Policlinico—San Marco”, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (S.S.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
7
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Turbett SE, Banach DB, Bard JD, Gandhi RG, Letourneau AR, Azar MM. Rapid antimicrobial resistance detection methods for bloodstream infection in solid organ transplantation: Proposed clinical guidance, unmet needs, and future directions. Transpl Infect Dis 2023; 25:e14113. [PMID: 37594214 DOI: 10.1111/tid.14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Recent advances in antimicrobial resistance detection have spurred the development of multiple assays that can accurately detect the presence of bacterial resistance from positive blood cultures, resulting in faster institution of effective antimicrobial therapy. Despite these advances, there are limited data regarding the use of these assays in solid organ transplant (SOT) recipients and there is little guidance on how to select, implement, and interpret them in clinical practice. We describe a practical approach to the implementation and interpretation of these assays in SOT recipients using the best available data and expert opinion. These findings were part of a consensus conference sponsored by the American Society of Transplantation held on December 7, 2021 and represent the collaboration between experts in transplant infectious diseases, pharmacy, antimicrobial and diagnostic stewardship, and clinical microbiology. Areas of unmet need and recommendations for future investigation are also presented.
Collapse
Affiliation(s)
- Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - David B Banach
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ronak G Gandhi
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alyssa R Letourneau
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Marwan M Azar
- Department of Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Lefèvre CR, Turban A, Luque Paz D, Penven M, René C, Langlois B, Pawlowski M, Collet N, Piau C, Cattoir V, Bendavid C. Early detection of plasma d-lactate: Toward a new highly-specific biomarker of bacteraemia? Heliyon 2023; 9:e16466. [PMID: 37265627 PMCID: PMC10230201 DOI: 10.1016/j.heliyon.2023.e16466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Background Bloodstream infections are a leading cause of mortality. Their detection relies on blood cultures (BCs) but time to positivity is often between tens of hours and days. d-lactate is a metabolite widely produced by bacteria but very few in human. We aimed to evaluate d-lactate, d-lactate/l-lactate ratio and d-lactate/total lactate ratio in plasma as potential early biomarkers of bacteraemia on a strictly biological standpoint. Methods A total of 228 plasma specimens were collected from patients who had confirmed bacteraemia (n = 131) and healthy outpatients (n = 97). Specific l-lactate and d-lactate analyses were performed using enzymatic assays and analytical performances of d-lactate, d-lactate/total lactate and d-lactate/l-lactate ratios for the diagnosis of bacteraemia were assessed. Results A preliminary in vitro study confirmed that all strains of Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus were able to produce d-lactate at significant levels. In patients, plasma d-lactate level was the most specific biomarker predicting a bacteraemia profile with a specificity and predictive positive value of 100% using a cut-off of 131 μmol.L-1. However, sensitivity and negative predictive value were rather low, estimated at 31% and 52%, respectively. d-lactate displayed an Area Under Receiver Operating Characteristic (AUROC) curve of 0.696 with a P value < 0.0001. There was no difference of d-lactate levels between BCs bottles positive for Gram-positive or Gram-negative bacteria (p = 0.55). Conclusion d-lactate shows promise as a specific early biomarker of bacterial metabolism. The development of rapid automated assays could raise clinical applications for infectious diseases diagnosis including early bacteraemia prediction.
Collapse
Affiliation(s)
- Charles R. Lefèvre
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Adrien Turban
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - David Luque Paz
- Infectious Diseases and Intensive Care Unit, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Malo Penven
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Céline René
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | | | - Maxime Pawlowski
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Nicolas Collet
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Caroline Piau
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Vincent Cattoir
- Bacteriology Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Claude Bendavid
- Biochemistry Laboratory, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| |
Collapse
|
10
|
Biswas J, Appasami KP, Gautam H, Mohapatra S, Sood S, Dhawan B, Chaudhry R, Kapil A, Das BK. Tick-tock, beat the clock: comparative analysis of disc diffusion testing with 6-, 10-, and 24-h growth for accelerated antimicrobial susceptibility testing and antimicrobial stewardship. Eur J Clin Microbiol Infect Dis 2023:10.1007/s10096-023-04611-y. [PMID: 37171540 DOI: 10.1007/s10096-023-04611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Disc diffusion testing by Kirby-Bauer technique is the most used method for determining antimicrobial susceptibility in microbiological laboratories. The current guidelines by The Clinical and Laboratory Standards Institute (CLSI) 2022 specify using an 18- to 24-h growth for testing by disc diffusion. We aim to determine if using an early growth (6 h and 10 h) would produce comparable results, thus ultimately leading to reduced turnaround time. Six-hour, 10-h, and 24-h growths of 20 quality control strains and 6-h and 24-h growths of 48 clinical samples were used to perform disc diffusion testing using a panel of appropriate antimicrobial agents. Disc diffusion zone sizes were interpreted for all and comparative analyses were performed to determine categorical agreement, minor errors (mE), major errors (ME), and very major errors (VME) according to CLSI guidelines. On comparing with the standard 24 h of incubation, disc diffusion from 6-h and 10-h growths of quality control strains showed 94.38% categorical agreement, 5.10% mE, 0.69% MEs, and no VMEs. Disc diffusion testing for the additional 40 clinical samples yielded a similarly high level of categorical agreement (98.15%) and mE, ME, and VME of 1.29%, 1.22%, and 0% respectively. Disc diffusion testing using early growth is a simple and accurate method for susceptibility testing that can reduce turnaround time and may prove to be critical for timely patient management.
Collapse
Affiliation(s)
- Jaya Biswas
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Kavi Priya Appasami
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Hitender Gautam
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Benu Dhawan
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Al Sidairi H, Reid EK, LeBlanc JJ, Sandila N, Head J, Davis I, Bonnar P. Optimizing Treatment of Staphylococcus aureus Bloodstream Infections Following Rapid Molecular Diagnostic Testing and an Antimicrobial Stewardship Program Intervention. Microbiol Spectr 2023; 11:e0164822. [PMID: 36790177 PMCID: PMC10101007 DOI: 10.1128/spectrum.01648-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Pending antibiotic susceptibility results, vancomycin is often used for bloodstream infections (BSIs) to ensure treatment of methicillin-resistant Staphylococcus aureus (MRSA). As rapid discrimination of methicillin-susceptible S. aureus (MSSA) from MRSA in BSIs could decrease vancomycin use and allow early optimization of beta-lactam therapy, this study evaluated the impact of the use of rapid molecular testing for MSSA and MRSA coupled with an antimicrobial stewardship program (ASP) intervention. Between January and July 2020, the Cepheid Xpert MRSA/SA blood culture assay was performed on blood cultures with Gram-positive cocci in clusters that were identified as S. aureus using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The ASP team member then consulted with the treating physician. The time to optimal therapy (TTOT) and clinical outcomes, including length of hospital stay (LOS), were compared between the intervention (n = 29) and historical (n = 27) cohorts. TTOT was defined as the time from the first blood culture draw to the use of appropriately dosed antistaphylococcal beta-lactam monotherapy without vancomycin. Molecular testing significantly reduced the median time to MSSA and MRSA discrimination to 7.8 h, compared to 24.3 h with culture-based methods (P < 0.001). Compared to the control group, the median TTOT in the ASP intervention group was significantly shorter (P = 0.041) at 38.0 h (versus 50.1 h). Rapid discrimination between MRSA and MSSA using molecular testing, paired with an ASP intervention, significantly reduced the TTOT in patients with MSSA BSIs. IMPORTANCE Our research shows that time to optimal antibiotic treatment for serious bloodstream infections can be improved with rapid molecular sensitivity testing and feedback to prescribers. This can be implemented in laboratories without full microbiology services or training to improve patient outcomes by improving antimicrobial use.
Collapse
Affiliation(s)
- Hilal Al Sidairi
- Division of Infectious Diseases, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Emma K. Reid
- Division of Infectious Diseases, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason J. LeBlanc
- Division of Infectious Diseases, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Navjot Sandila
- Research Methods Unit (RMU), Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Joline Head
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
| | - Ian Davis
- Division of Infectious Diseases, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health, Halifax, Nova Scotia, Canada
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul Bonnar
- Division of Infectious Diseases, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Duan R, Wang P. Rapid and Simple Approaches for Diagnosis of Staphylococcus aureus in Bloodstream Infections. Pol J Microbiol 2022; 71:481-489. [PMID: 36476633 PMCID: PMC9944965 DOI: 10.33073/pjm-2022-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is an important causative pathogen of bloodstream infections. An amplification assay such as real-time PCR is a sensitive, specific technique to detect S. aureus. However, it needs well-trained personnel, and costs are high. A literature review focusing on rapid and simple methods for diagnosing S. aureus was performed. The following methods were included: (a) Hybrisep in situ hybridization test, (b) T2Dx system, (c) BinaxNow Staphylococcus aureus and PBP2a, (d) Gram staining, (e) PNA FISH and QuickFISH, (f) Accelerate PhenoTM system, (g) MALDI-TOF MS, (h) BioFire FilmArray, (i) Xpert MRSA/SA. These rapid and simple methods can rapidly identify S. aureus in positive blood cultures or direct blood samples. Furthermore, BioFire FilmArray and Xpert MRSA/SA identify methicillin-resistant S. aureus (MRSA), and the Accelerate PhenoTM system can also provide antimicrobial susceptibility testing (AST) results. The rapidity and simplicity of results generated by these methods have the potential to improve patient outcomes and aid in the prevention of the emergence and transmission of MRSA.
Collapse
Affiliation(s)
- Rui Duan
- Department of Laboratory Medicine and Blood Transfusion, The First People’s Hospital of Jingmen, Jingmen, Hubei Province, China
| | - Pei Wang
- Department of Laboratory Medicine and Blood Transfusion, The First People’s Hospital of Jingmen, Jingmen, Hubei Province, China, E-mail:
| |
Collapse
|
13
|
Impact of EUCAST rapid antimicrobial susceptibility testing (RAST) on management of Gram-negative bloodstream infection. Infect Dis Now 2022; 52:421-425. [DOI: 10.1016/j.idnow.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
|
14
|
López-Hernández I, López-Cerero L, Fernández-Cuenca F, Pascual Á. The role of the microbiology laboratory in the diagnosis of multidrug-resistant Gram-negative bacilli infections. The importance of the determination of resistance mechanisms. Med Intensiva 2022; 46:455-464. [PMID: 35643635 DOI: 10.1016/j.medine.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/15/2023]
Abstract
Early diagnosis and treatment has an important impact on the morbidity and mortality of infections caused by multidrug-resistant bacteria. Multidrug-resistant gram-negative bacilli (MR-GNB) constitute the main current threat in hospitals and especially in intensive care units (ICU). The role of the microbiology laboratory is essential in providing a rapid and effective response. This review updates the microbiology laboratory procedures for the rapid detection of BGN-MR and its resistance determinants. The role of the laboratory in the surveillance and control of outbreaks caused by these bacteria, including typing techniques, is also studied. The importance of providing standardized resistance maps that allow knowing the epidemiological situation of the different units is emphasized. Finally, the importance of effective communication systems for the transmission of results and decision making in the management of patients infected by BGN-MR is reviewed.
Collapse
Affiliation(s)
- I López-Hernández
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - L López-Cerero
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - F Fernández-Cuenca
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | - Á Pascual
- Unidad de Enfermedades Infecciosas y Microbiología Clínica, Hospital Universitario Virgen Macarena, Sevilla, Spain; Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain; Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
El papel del laboratorio de microbiología en el diagnóstico de infecciones por bacilos gramnegativos multirresistentes. Importancia de la determinación de mecanismos de resistencias. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Putney S, Theiss AH, Rajan NK, Deak E, Buie C, Ngo Y, Shah H, Yuan V, Botbol-Ponte E, Hoyos-Urias A, Knopfmacher O, Hogan CA, Banaei N, Herget MS. Novel electronic biosensor for automated inoculum preparation to accelerate antimicrobial susceptibility testing. Sci Rep 2021; 11:11360. [PMID: 34059754 PMCID: PMC8166823 DOI: 10.1038/s41598-021-90830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
A key predictor of morbidity and mortality for patients with a bloodstream infection is time to appropriate antimicrobial therapy. Accelerating antimicrobial susceptibility testing from positive blood cultures is therefore key to improving patient outcomes, yet traditional laboratory approaches can require 2–4 days for actionable results. The eQUANT—a novel instrument utilizing electrical biosensors—produces a standardized inoculum equivalent to a 0.5 McFarland directly from positive blood cultures. This proof-of-concept study demonstrates that eQUANT inocula prepared from clinically significant species of Enterobacterales were comparable to 0.5 McF inocula generated from bacterial colonies in both CFU/ml concentration and performance in antimicrobial susceptibility testing, with ≥ 95% essential and categorical agreement for VITEK2 and disk diffusion. The eQUANT, combined with a rapid, direct from positive blood culture identification technique, can allow the clinical laboratory to begin antimicrobial susceptibility testing using a standardized inoculum approximately 2–3 h after a blood culture flags positive. This has the potential to improve clinical practice by accelerating conventional antimicrobial susceptibility testing and the resulting targeted antibiotic therapy.
Collapse
Affiliation(s)
- Suzanne Putney
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Andrew H Theiss
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Nitin K Rajan
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Eszter Deak
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Creighton Buie
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Yvonne Ngo
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Hima Shah
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Victoria Yuan
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | | | | | - Oren Knopfmacher
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA
| | - Catherine A Hogan
- Stanford University School of Medicine, 3375 Hillview Ave, Palo Alto, CA, 94304, USA
| | - Niaz Banaei
- Stanford University School of Medicine, 3375 Hillview Ave, Palo Alto, CA, 94304, USA
| | - Meike S Herget
- Avails Medical Inc., 1455 Adams Drive, Menlo Park, CA, 94025, USA.
| |
Collapse
|