1
|
Chizimu JY, Mudenda S, Yamba K, Lukwesa C, Chanda R, Nakazwe R, Shawa M, Chambaro H, Kamboyi HK, Kalungia AC, Chanda D, Fwoloshi S, Jere E, Mufune T, Munkombwe D, Lisulo P, Mateele T, Thapa J, Kapolowe K, Sinyange N, Sialubanje C, Kapata N, Mpundu M, Masaninga F, Azam K, Nakajima C, Siyanga M, Bakyaita NN, Wesangula E, Matu M, Suzuki Y, Chilengi R. Antibiotic use and adherence to the WHO AWaRe guidelines across 16 hospitals in Zambia: a point prevalence survey. JAC Antimicrob Resist 2024; 6:dlae170. [PMID: 39464860 PMCID: PMC11503655 DOI: 10.1093/jacamr/dlae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Background The inappropriate use of antibiotics in hospitals contributes to the development and spread of antimicrobial resistance (AMR). This study evaluated the prevalence of antibiotic use and adherence to the World Health Organization (WHO) Access, Watch and Reserve (AWaRe) classification of antibiotics across 16 hospitals in Zambia. Methods A descriptive, cross-sectional study employing the WHO Point Prevalence Survey (PPS) methodology and WHO AWaRe classification of antibiotics was conducted among inpatients across 16 hospitals in December 2023, Zambia. Data analysis was performed using STATA version 17.0. Results Of the 1296 inpatients surveyed in the 16 hospitals, 56% were female, and 54% were aged between 16 and 50 years. The overall prevalence of antibiotic use was 70%. Additionally, 52% of the inpatients received Watch group antibiotics, with ceftriaxone being the most prescribed antibiotic. Slightly below half (48%) of the inpatients received Access group antibiotics. Compliance with the local treatment guidelines was 53%. Conclusions This study found a high prevalence of prescribing and use of antibiotics in hospitalized patients across the surveyed hospitals in Zambia. The high use of Watch group antibiotics was above the recommended threshold indicating non-adherence to the WHO AWaRe guidelines for antibiotic use. Hence, there is a need to establish and strengthen antimicrobial stewardship programmes that promote the rational use of antibiotics in hospitals in Zambia.
Collapse
Affiliation(s)
- Joseph Yamweka Chizimu
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Kaunda Yamba
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
- Action against Antimicrobial Resistance (ReAct) Africa, Lusaka, Zambia
| | - Chileshe Lukwesa
- Department of Health, Lusaka District Health Office, Lusaka, Zambia
| | - Raphael Chanda
- Department of Pathology and Microbiology, University Teaching Hospitals, Lusaka, Zambia
| | - Ruth Nakazwe
- Department of Pathology and Microbiology, University Teaching Hospitals, Lusaka, Zambia
| | - Misheck Shawa
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, Zambia
| | - Herman Chambaro
- Virology Unit, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Harvey K Kamboyi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Duncan Chanda
- Department of Infectious Diseases, University Teaching Hospitals, Lusaka, Zambia
| | - Sombo Fwoloshi
- Department of Infectious Diseases, University Teaching Hospitals, Lusaka, Zambia
| | - Elimas Jere
- Department of Post Marketing Surveillance, Zambia Medicines Regulatory Authority, Lusaka, Zambia
| | - Tiza Mufune
- Virology Unit, Central Veterinary Research Institute, Ministry of Health, Kabwe District Health Office, Kabwe, Zambia
| | - Derick Munkombwe
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Peter Lisulo
- Department of Health, World Health Organization, Lusaka, Zambia
| | - Tebuho Mateele
- Department of Internal Medicine, Levy Mwanawasa University Teaching Hospital, Lusaka, Zambia
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Kenneth Kapolowe
- Department of Internal Medicine, Levy Mwanawasa University Teaching Hospital, Lusaka, Zambia
| | - Nyambe Sinyange
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
| | - Cephas Sialubanje
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
| | - Nathan Kapata
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
| | - Mirfin Mpundu
- Action against Antimicrobial Resistance (ReAct) Africa, Lusaka, Zambia
| | | | - Khalid Azam
- Strengthening Pandemic Preparedness, Eastern and Southern Africa Health Community, Arusha, Tanzania
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Makomani Siyanga
- Department of Post Marketing Surveillance, Zambia Medicines Regulatory Authority, Lusaka, Zambia
| | | | - Evelyn Wesangula
- Strengthening Pandemic Preparedness, Eastern and Southern Africa Health Community, Arusha, Tanzania
| | - Martin Matu
- Strengthening Pandemic Preparedness, Eastern and Southern Africa Health Community, Arusha, Tanzania
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Kita 20 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan
| | - Roma Chilengi
- Antimicrobial Resistance Coordinating Committee (AMRCC), Zambia National Public Health Institute (ZNPHI), Lusaka, Zambia
| |
Collapse
|
2
|
Shempela DM, Mudenda S, Kasanga M, Daka V, Kangongwe MH, Kamayani M, Sikalima J, Yankonde B, Kasonde CB, Nakazwe R, Mwandila A, Cham F, Njuguna M, Simwaka B, Morrison L, Chizimu JY, Muma JB, Chilengi R, Sichinga K. A Situation Analysis of the Capacity of Laboratories in Faith-Based Hospitals in Zambia to Conduct Surveillance of Antimicrobial Resistance: Opportunities to Improve Diagnostic Stewardship. Microorganisms 2024; 12:1697. [PMID: 39203539 PMCID: PMC11357258 DOI: 10.3390/microorganisms12081697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Antimicrobial resistance (AMR) is a public health problem exacerbated by the overuse and misuse of antibiotics and the inadequate capacity of laboratories to conduct AMR surveillance. This study assessed the capacity of laboratories in seven faith-based hospitals to conduct AMR testing and surveillance in Zambia. This multi-facility, cross-sectional exploratory study was conducted from February 2024 to April 2024. We collected and analysed data using the self-scoring Laboratory Assessment of Antibiotic Resistance Testing Capacity (LAARC) tool. This study found an average score of 39%, indicating a low capacity of laboratories to conduct AMR surveillance. The highest capacity score was 47%, while the lowest was 25%. Only one hospital had a full capacity (100%) to utilise a laboratory information system (LIS). Three hospitals had a satisfactory capacity to perform data management with scores of 83%, 85%, and 95%. Only one hospital had a full capacity (100%) to process specimens, and only one hospital had good safety requirements for a microbiology laboratory, with a score of 89%. This study demonstrates that all the assessed hospitals had a low capacity to conduct AMR surveillance, which could affect diagnostic stewardship. Therefore, there is an urgent need to strengthen the microbiology capacity of laboratories to enhance AMR surveillance in Zambia.
Collapse
Affiliation(s)
- Doreen Mainza Shempela
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (M.K.); (J.S.); (B.Y.); (C.B.K.); (A.M.); (K.S.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
| | - Maisa Kasanga
- Department of Pathology and Microbiology, University Teaching Hospitals, Lusaka 10101, Zambia; (M.K.); (R.N.)
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Victor Daka
- Department of Public Health, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | | | - Mapeesho Kamayani
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (M.K.); (J.S.); (B.Y.); (C.B.K.); (A.M.); (K.S.)
| | - Jay Sikalima
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (M.K.); (J.S.); (B.Y.); (C.B.K.); (A.M.); (K.S.)
| | - Baron Yankonde
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (M.K.); (J.S.); (B.Y.); (C.B.K.); (A.M.); (K.S.)
| | - Cynthia Banda Kasonde
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (M.K.); (J.S.); (B.Y.); (C.B.K.); (A.M.); (K.S.)
| | - Ruth Nakazwe
- Department of Pathology and Microbiology, University Teaching Hospitals, Lusaka 10101, Zambia; (M.K.); (R.N.)
| | - Andrew Mwandila
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (M.K.); (J.S.); (B.Y.); (C.B.K.); (A.M.); (K.S.)
| | - Fatim Cham
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (F.C.); (M.N.); (B.S.); (L.M.)
| | - Michael Njuguna
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (F.C.); (M.N.); (B.S.); (L.M.)
| | - Bertha Simwaka
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (F.C.); (M.N.); (B.S.); (L.M.)
| | - Linden Morrison
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (F.C.); (M.N.); (B.S.); (L.M.)
| | - Joseph Yamweka Chizimu
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka 10101, Zambia; (J.Y.C.); (R.C.)
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Roma Chilengi
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka 10101, Zambia; (J.Y.C.); (R.C.)
| | - Karen Sichinga
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (M.K.); (J.S.); (B.Y.); (C.B.K.); (A.M.); (K.S.)
| |
Collapse
|
3
|
Mudenda S, Chabalenge B, Daka V, Jere E, Sefah IA, Wesangula E, Yamba K, Nyamupachitu J, Mugenyi N, Mustafa ZU, Mpundu M, Chizimu J, Chilengi R. Knowledge, awareness and practices of healthcare workers regarding antimicrobial use, resistance and stewardship in Zambia: a multi-facility cross-sectional study. JAC Antimicrob Resist 2024; 6:dlae076. [PMID: 38764535 PMCID: PMC11100357 DOI: 10.1093/jacamr/dlae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Background Antimicrobial resistance (AMR) poses a threat to public health globally. Despite its consequences, there is little information about the knowledge, awareness, and practices towards AMR among healthcare workers (HCWs). Therefore, this study assessed the knowledge, awareness and practices regarding antimicrobial use (AMU), AMR and antimicrobial stewardship (AMS) among HCWs who are involved in the implementation of AMS activities across eight hospitals in Zambia. Methods A cross-sectional study was conducted among 64 HCWs from October to December 2023 using a semi-structured questionnaire. Data were analysed using IBM SPSS version 25.0. Results Of the 64 HCWs, 59.4% were females, 60.9% were aged between 25 and 34 years, 37.5% were nurses, 18.7% were pharmacists, 17.2% were medical doctors and only one was a microbiologist. Overall, 75% of the HCWs had good knowledge, 84% were highly aware and 84% had good practices regarding AMU, AMR and AMS. Most of the HCWs (90.6%) responded that they had a multidisciplinary AMS team at their hospitals and were implementing the use of the WHO AWaRe classification of antibiotics. Conclusion This study found good knowledge levels, high awareness and good practices regarding AMU, AMR and AMS among HCWs who were involved in the implementation of AMS activities in hospitals in Zambia. Additionally, most hospitals have been conducting AMS training and implementing the use of the WHO AWaRe classification of antibiotics. However, there is still a need to address some identified gaps in AMU and AMR through the strengthening of AMS activities in hospitals.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Billy Chabalenge
- Department of Medicines Control, Zambia Medicines Regulatory Authority, Lusaka, Zambia
| | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Elimas Jere
- Department of Medicines Control, Zambia Medicines Regulatory Authority, Lusaka, Zambia
| | - Israel Abebrese Sefah
- Pharmacy Practice Department, School of Pharmacy, University of Health and Allied Sciences, Volta Region, PMB 31, Ho, Ghana
| | - Evelyn Wesangula
- Strengthening Pandemic Preparedness, Eastern, Central, and Southern Africa Health Community, Arusha, Tanzania
| | - Kaunda Yamba
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | | | - Nathan Mugenyi
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Zia Ul Mustafa
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
- Department of Pharmacy Services, District Headquarter (DHQ) Hospital, Pakpattan, 57400, Pakistan
| | - Mirfin Mpundu
- Action on Antibiotic Resistance (ReAct) Africa, Lusaka, Zambia
| | - Joseph Chizimu
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| | - Roma Chilengi
- Antimicrobial Resistance Coordinating Committee, Zambia National Public Health Institute, Lusaka, Zambia
| |
Collapse
|
4
|
Kasanga M, Kwenda G, Wu J, Kasanga M, Mwikisa MJ, Chanda R, Mupila Z, Yankonde B, Sikazwe M, Mwila E, Shempela DM, Solochi BB, Phiri C, Mudenda S, Chanda D. Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms 2023; 11:1951. [PMID: 37630511 PMCID: PMC10459584 DOI: 10.3390/microorganisms11081951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a public health problem threatening human, animal, and environmental safety. This study assessed the AMR profiles and risk factors associated with Escherichia coli in hospital and environmental settings in Lusaka, Zambia. This cross-sectional study was conducted from April 2022 to August 2022 using 980 samples collected from clinical and environmental settings. Antimicrobial susceptibility testing was conducted using BD PhoenixTM 100. The data were analysed using SPSS version 26.0. Of the 980 samples, 51% were from environmental sources. Overall, 64.5% of the samples tested positive for E. coli, of which 52.5% were from clinical sources. Additionally, 31.8% were ESBL, of which 70.1% were clinical isolates. Of the 632 isolates, 48.3% were MDR. Most clinical isolates were resistant to ampicillin (83.4%), sulfamethoxazole/trimethoprim (73.8%), and ciprofloxacin (65.7%) while all environmental isolates were resistant to sulfamethoxazole/trimethoprim (100%) and some were resistant to levofloxacin (30.6%). The drivers of MDR in the tested isolates included pus (AOR = 4.6, CI: 1.9-11.3), male sex (AOR = 2.1, CI: 1.2-3.9), and water (AOR = 2.6, CI: 1.2-5.8). This study found that E. coli isolates were resistant to common antibiotics used in humans. The presence of MDR isolates is a public health concern and calls for vigorous infection prevention measures and surveillance to reduce AMR and its burdens.
Collapse
Affiliation(s)
- Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Jian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China (J.W.)
| | - Maika Kasanga
- Department of Pharmacy, University Teaching Hospital, Lusaka 50110, Zambia;
| | - Mark J. Mwikisa
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Raphael Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| | - Zachariah Mupila
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Baron Yankonde
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Mutemwa Sikazwe
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Enock Mwila
- Department of Pathology, Lusaka Trust Hospital, Lusaka 35852, Zambia
| | - Doreen M. Shempela
- Churches Health Association of Zambia, Lusaka 34511, Zambia
- Department of Laboratory and Research, Central University of Nicaragua, Managua 12104, Nicaragua
| | - Benjamin B. Solochi
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka 50110, Zambia (B.B.S.)
| | - Christabel Phiri
- Department of Microbiology, School of Public Health, University of Zambia, Lusaka 10101, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
- Research and Surveillance Technical Working Group, Zambia National Public Health Institute, Lusaka 10101, Zambia
| | - Duncan Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka 50110, Zambia
| |
Collapse
|
5
|
Bacteriological spectrum, extended-spectrum β-lactamase production and antimicrobial resistance pattern among patients with bloodstream infection in Addis Ababa. Sci Rep 2023; 13:2071. [PMID: 36746979 PMCID: PMC9902618 DOI: 10.1038/s41598-023-29337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Bloodstream infection coupled with drug resistance in bloodborne bacteria is a major health problem globally. The current study sought to identify the bacterial spectrum, extended-spectrum -lactamase production, and antimicrobial resistance pattern in patients with bloodstream infection. This prospective cross-sectional study was conducted at Arsho Advanced Medical Laboratory, Addis Ababa, Ethiopia from January 2019- until July 2020. Blood collected from patients was inoculated into blood culture bottles and incubated appropriately. Identification, antimicrobial susceptibility testing, and extended-spectrum β-lactamase-production were determined with the VITEK 2 compact system. Of the samples collected, 156 (18.5%) were culture-positive. Klebsiella pneumoniae and Staphylococcus epidermidis were the dominant isolates. In Gram-negative bacteria, the prevalence of drug resistance was the highest against ampicillin (80.8%) and the lowest against imipenem (5.2%). While in Gram-positive bacteria it was the highest against clindamycin and the lowest against vancomycin and daptomycin. The prevalence of multi-drug resistance and extended-spectrum β-lactamase production of Gram-negative bacteria were 41.6% and 34.2%, respectively. The prevalence of bloodstream infection was 18.5%. Serious life-threatening pathogens including S. aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Enterobacter spp was predominant. The prevalence of multi-drug resistance to both Gram-positive and Gram-negative bacteria and extended-spectrum β-lactamase-production were high but prevalence of carbapenem resistance was low. All these situations call for the establishment of strong infection control strategies, a drug regulatory system, and established antibiotic stewardship in healthcare settings.
Collapse
|
6
|
Kasanga M, Mukosha R, Kasanga M, Siyanga M, Mudenda S, Solochi BB, Chileshe M, Mwiikisa MJ, Gondwe T, Kantenga T, Shibemba AL, Nakazwe R, Chitalu M, Wu J. Antimicrobial resistance patterns of bacterial pathogens their distribution in university teaching hospitals in Zambia. Future Microbiol 2021; 16:811-824. [PMID: 34184556 DOI: 10.2217/fmb-2021-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: To determine the antimicrobial resistance patterns of bacterial pathogens from urine, blood and wound infections and their distribution by age, sex and location. Materials & methods: A total of 49,168 samples were collected, processed and analyzed. Results: Multidrug resistance was observed in almost all bacterial pathogens in blood urine and wound swabs. In urine and females odds ratio (OR) = 0.864, p = 0.023, OR = 0.909, p = 0.013 urine and neonates were susceptible to antibiotics OR = 0.859, p = 0.003, OR = 0.741, p < 0.001. Ampicillin resistance was above 90% against Escherichia coli in blood, urine and wound swabs. Conclusion: There was a spike in resistance to imipenem, ciprofloxacin and ampicillin against E. coli, Klebsiella pneumoniae, Proteus mirabilis and Proteus species from all three specimen sources.
Collapse
Affiliation(s)
- Maisa Kasanga
- Zhengzhou University, College of Public Health, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.,Department of Pathology & Microbiology, University Teaching Hospitals, P/Bag RW1X, Lusaka, Zambia
| | - Raphael Mukosha
- Levy Mwanawasa University Teaching Hospital, Laboratory Department, Great East Road, Chainama Area, Lusaka, 3170151, Zambia
| | - Maika Kasanga
- Department of Pathology & Microbiology, University Teaching Hospitals, P/Bag RW1X, Lusaka, Zambia
| | - Makomani Siyanga
- Zambia Medicines Regulatory Authority, Plot No. 2350/M, Off KK International Airport Road, Lusaka, 31890, Zambia
| | - Steward Mudenda
- Department of Pharmacy, The University of Zambia, School of Health Sciences, Lusaka, 50110, Zambia.,Department of Disease Control, The University of Zambia, School of Veterinary Medicine, Lusaka, 32379, Zambia
| | - Benjamin Bisesa Solochi
- Department of Pathology & Microbiology, University Teaching Hospitals, P/Bag RW1X, Lusaka, Zambia
| | - Misheck Chileshe
- Department of Mary Begg Health Services Laboratory, 56 Chintu Avenue, Northrise, Ndola, 72221, Zambia
| | - Mark J Mwiikisa
- Department of Lusaka Trust Hospital Laboratory, Plot 2190, Nsumbu Rd, Woodlands, Lusaka Main, Lusaka, 35852, Zambia
| | - Theodore Gondwe
- Zhengzhou University, College of Public Health, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Timothy Kantenga
- Department of Pathology & Microbiology, University Teaching Hospitals, P/Bag RW1X, Lusaka, Zambia
| | - Aaron Lunda Shibemba
- Department of Pathology & Microbiology, University Teaching Hospitals, P/Bag RW1X, Lusaka, Zambia.,Directorate of Clinical Pathology & Laboratory Services, Ministry of Health, Lusaka, Zambia
| | - Ruth Nakazwe
- Department of Pathology & Microbiology, University Teaching Hospitals, P/Bag RW1X, Lusaka, Zambia
| | - Mwansa Chitalu
- Department of Pathology & Microbiology, University Teaching Hospitals, P/Bag RW1X, Lusaka, Zambia
| | - Jian Wu
- Zhengzhou University, College of Public Health, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| |
Collapse
|