1
|
Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida dubliniensis Using Immunoinformatics. Vaccines (Basel) 2023; 11:vaccines11020364. [PMID: 36851241 PMCID: PMC9964391 DOI: 10.3390/vaccines11020364] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Candida dubliniensis is an opportunistic pathogen associated with oral and invasive fungal infections in immune-compromised individuals. Furthermore, the emergence of C. dubliniensis antifungal drug resistance could exacerbate its treatment. Hence, in this study a multi-epitope vaccine candidate has been designed using an immunoinformatics approach by targeting C. dubliniensis secreted aspartyl proteinases (SAP) proteins. In silico tools have been utilized to predict epitopes and determine their allergic potential, antigenic potential, toxicity, and potential to elicit interleukin-2 (IL2), interleukin-4 (IL4), and IFN-γ. Using the computational tools, eight epitopes have been predicted that were then linked with adjuvants for final vaccine candidate development. Computational immune simulation has depicted that the immunogen designed emerges as a strong immunogenic candidate for a vaccine. Further, molecular docking and molecular dynamics simulation analyses revealed stable interactions between the vaccine candidate and the human toll-like receptor 5 (TLR5). Finally, immune simulations corroborated the promising candidature of the designed vaccine, thus calling for further in vivo investigation.
Collapse
|
2
|
Wen W, Cao H, Huang Y, Tu J, Wan C, Wan J, Han X, Chen H, Liu J, Rao L, Su C, Peng C, Sheng C, Ren Y. Structure-Guided Discovery of the Novel Covalent Allosteric Site and Covalent Inhibitors of Fructose-1,6-Bisphosphate Aldolase to Overcome the Azole Resistance of Candidiasis. J Med Chem 2022; 65:2656-2674. [PMID: 35099959 DOI: 10.1021/acs.jmedchem.1c02102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose-1,6-bisphosphate aldolase (FBA) represents an attractive new antifungal target. Here, we employed a structure-based optimization strategy to discover a novel covalent binding site (C292 site) and the first-in-class covalent allosteric inhibitors of FBA from Candida albicans (CaFBA). Site-directed mutagenesis, liquid chromatography-mass spectrometry, and the crystallographic structures of APO-CaFBA, CaFBA-G3P, and C157S-2a4 revealed that S268 is an essential pharmacophore for the catalytic activity of CaFBA, and L288 is an allosteric regulation switch for CaFBA. Furthermore, most of the CaFBA covalent inhibitors exhibited good inhibitory activity against azole-resistant C. albicans, and compound 2a11 can inhibit the growth of azole-resistant strains 103 with the MIC80 of 1 μg/mL. Collectively, this work identifies a new covalent allosteric site of CaFBA and discovers the first generation of covalent inhibitors for fungal FBA with potent inhibitory activity against resistant fungi, establishing a structural foundation and providing a promising strategy for the design of potent antifungal drugs.
Collapse
Affiliation(s)
- Wuqiang Wen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongxuan Cao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Han Chen
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiaqi Liu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chen Su
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Dhasarathan P, AlSalhi MS, Devanesan S, Subbiah J, Ranjitsingh AJA, Binsalah M, Alfuraydi AA. Drug resistance in Candida albicans isolates and related changes in the structural domain of Mdr1 protein. J Infect Public Health 2021; 14:1848-1853. [PMID: 34794907 DOI: 10.1016/j.jiph.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The increasing azole drug resistance in fungal pathogens poses a pressing threat to global health care. The coexistence of drug-resistant Candida albicans with tuberculosis patients and the failure of several drugs to treat C. albicans infection extend hospital stay, economic burden, and death. The misuse or abuse of azole-derived antifungals, chronic use of TB drugs, different immune-suppressive drugs, and diseases like HIV, COVID-19, etc., have aggravated the situation. So it is vital to understand the molecular changes in drug-resistant genes to modify the treatment to design an alternative mechanism. METHOD C. albicans isolated from chronic tuberculosis patients were screened for antifungal sensitivity studies using disk diffusion assay. The multidrug-resistant C. albicans were further screened for molecular-level changes in drug resistance using MDR1 gene sequencing and compared with Gen bank data of similar species using the BLAST tool. RESULTS The investigation proved that the isolated C. albicans from TB patients are significantly resistant to the action of six drugs. The molecular changes in MDR1 genes showed differences in seven nucleotide base pairs that interfered with the efflux pump.
Collapse
Affiliation(s)
- P Dhasarathan
- Department of Biotechnology, Prathyusha Engineering College, Thiruvallur 602 025, Tamil Nadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Jeeva Subbiah
- Department Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - A J A Ranjitsingh
- Department of Biotechnology, Prathyusha Engineering College, Thiruvallur 602 025, Tamil Nadu, India.
| | - Mohammed Binsalah
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Molkenthin F, Hertel M, Neumann K, Schmidt-Westhausen AM. Factors influencing the presence of Candida dubliniensis and other non-albicans species in patients with oral lichen planus: a retrospective observational study. Clin Oral Investig 2021; 26:333-342. [PMID: 34142239 PMCID: PMC8791885 DOI: 10.1007/s00784-021-04004-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
Objectives The epidemiologic distribution of non-albicans species in the oral cavity of oral lichen planus (OLP) patients remains uncertain. Therefore, the aim of this study was to identify factors associated with the presence of C. dubliniensis and other non-albicans species. Furthermore, independent risk factors for Candida superinfection in OLP should be identified. Material and methods Epidemiologic data and microbiological findings from 268 symptomatic OLP patients who underwent continuous oral swab culture over a 5-year period (2015–2019) were retrospectively reviewed. Candida species identification and semi-quantification were obtained by culture on CHROMagar Candida, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Results C. albicans was the most frequently isolated species (72.3%), followed by C. glabrata (7.3%), C. dubliniensis (5.8%), C. krusei and C. parapsilosis (both 2.6%). The presence of C. dubliniensis was significantly associated with tobacco smoking. Other non-albicans spp. were significantly more often detected in patients using removable dentures. Increasing age and the intake of psychotropic drugs were identified as independent risk factors of Candida superinfection in OLP. Conclusion In OLP patients, certain local and systemic factors increase the risk of carrying potentially drug-resistant Candida species and the development of Candida superinfection of OLP lesions. Clinical relevance Due to the frequent detection of non-albicans species in OLP, resistance or at least reduced sensitivity to azole antifungals should be expected, especially in smokers and patients using removable dentures. In the case of oral complaints, a superinfection with Candida should be considered, whereby older patients and patients taking psychotropic drugs have an increased risk for oral infection with Candida.
Collapse
Affiliation(s)
- Florian Molkenthin
- CharitéCentre 3, Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4, 14197, Berlin, Germany.
| | - Moritz Hertel
- CharitéCentre 3, Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4, 14197, Berlin, Germany
| | - Konrad Neumann
- Institute of Medical Biometrics and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrea Maria Schmidt-Westhausen
- CharitéCentre 3, Department of Periodontology, Oral Medicine and Oral Surgery, Charité - Universitätsmedizin Berlin, Aßmannshauser Str. 4, 14197, Berlin, Germany
| |
Collapse
|
5
|
Tagle-Olmedo T, Andrade-Pavón D, Martínez-Gamboa A, Gómez-García O, García-Sierra F, Hernández-Rodríguez C, Villa-Tanaca L. Inhibitors of DNA topoisomerases I and II applied to Candida dubliniensis reduce growth, viability, the generation of petite mutants and toxicity, while acting synergistically with fluconazole. FEMS Yeast Res 2021; 21:6219866. [PMID: 33837766 DOI: 10.1093/femsyr/foab023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
The increasing resistance of Candida species to azoles emphasizes the urgent need for new antifungal agents with novel mechanisms of action. The aim of this study was to examine the effect of three DNA topoisomerase inhibitors of plant origin (camptothecin, etoposide and curcumin) on the growth of Candida dubliniensis. The phylogenetic analysis showed a close relationship between the topoisomerase enzymes of C. dubliniensis and Candida albicans. The alignment of the amino acid sequences of topoisomerase I and II of yeasts and humans evidenced conserved domains. The docking study revealed affinity of the test compounds for the active site of topoisomerase I and II in C. dubliniensis. Curcumin and camptothecin demonstrated a stronger in vitro antifungal effect than the reference drugs (fluconazole and itraconazole). Significant synergistic activity between the topoisomerase inhibitors and fluconazole at the highest concentration (750 µM) was observed. Fluconazole induced the petite phenotype to a greater degree than the topoisomerase inhibitors, indicating a tendency to generate resistance. Lower toxicity was found for such inhibitors versus reference drugs on Galleria mellonella larva. The topoisomerase inhibitors exhibited promising antifungal activity, and the DNA topoisomerase enzymes of C. dubliniensis proved to be an excellent model for evaluating new antifungal compounds.
Collapse
Affiliation(s)
- Tania Tagle-Olmedo
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| | - Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N Unidad Profesional "Adolfo López Mateos", Zacatenco. Col. Lindavista, Venustiano Carranza, Del, CP 07700, D.F., México
| | - Areli Martínez-Gamboa
- Laboratorio de Microbiología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 15 Vasco de Quiroga Ave, Belisario Domínguez Sección XVI, Tlalpan, México City, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| | - Francisco García-Sierra
- Departamento de Biología Celular, Centro de investigación y estudios avanzados del Instituto Politécnico Nacional (CINVESTAV), México City, México
| | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, 11340 México City, México
| |
Collapse
|
6
|
Ayadi R, Sitterlé E, d’Enfert C, Dannaoui E, Bougnoux ME. Candida albicans and Candida dubliniensis Show Different Trailing Effect Patterns When Exposed to Echinocandins and Azoles. Front Microbiol 2020; 11:1286. [PMID: 32612593 PMCID: PMC7308431 DOI: 10.3389/fmicb.2020.01286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
When Candida albicans and Candida dubliniensis isolates were tested for susceptibility to fluconazole and echinocandins using either EUCAST or Etest methods, differential patterns of growth were observed, independently of the methods used. For C. albicans, a trailing phenomenon (incomplete growth inhibition at supra-MICs) was observed with fluconazole in 90% and 93.3% for EUCAST and Etest, respectively, but not with echinocandins (<7% for EUCAST and 0% for Etest). In contrast, for C. dubliniensis, a trailing phenomenon was very rarely observed with fluconazole (20% for EUCAST and 0% for Etest), while the opposite pattern was observed with echinocandins (>50% for EUCAST and >86% for Etest). This suggests that the pathways involved in the trailing effect might be different between these two related species. Furthermore, clinical microbiologists must be aware of these species-specific patterns for a reliable MIC determination.
Collapse
Affiliation(s)
- Rania Ayadi
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Faculté de Médecine, APHP, Hôpital Européen Georges Pompidou, Université Paris-Descartes, Paris, France
| | - Emilie Sitterlé
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Faculté de Médecine, APHP, Hôpital Necker Enfants-Malades, Université Paris-Descartes, Paris, France
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Eric Dannaoui
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Faculté de Médecine, APHP, Hôpital Européen Georges Pompidou, Université Paris-Descartes, Paris, France
- Dynamyc Research Group, Paris Est Créteil University (UPEC, EnvA), Créteil, France
| | - Marie-Elisabeth Bougnoux
- Unité de Parasitologie-Mycologie, Service de Microbiologie, Faculté de Médecine, APHP, Hôpital Necker Enfants-Malades, Université Paris-Descartes, Paris, France
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC 2019 INRA, Paris, France
| |
Collapse
|
7
|
Priya A, Pandian SK. Piperine Impedes Biofilm Formation and Hyphal Morphogenesis of Candida albicans. Front Microbiol 2020; 11:756. [PMID: 32477284 PMCID: PMC7237707 DOI: 10.3389/fmicb.2020.00756] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is the primary etiological agent associated with the pathogenesis of candidiasis. Unrestricted growth of C. albicans in the oral cavity may lead to oral candidiasis, which can progress to systemic infections in worst scenarios. Biofilm of C. albicans encompasses yeast and hyphal forms, where hyphal formation and yeast to hyphal morphological transitions are contemplated as the key virulence elements. Current clinical repercussions necessitate the identification of therapeutic agent that can limit the biofilm formation and escalating the susceptibility of C. albicans to immune system and conventional antifungals. In the present study, a plant-derived alkaloid molecule, piperine, was investigated for the antibiofilm and antihyphal activities against C. albicans. Piperine demonstrated a concentration-dependent antibiofilm activity without exerting negative impact on growth and metabolic activity. Inhibition in the hyphal development was witnessed through confocal laser-scanning microscopy and scanning electron microscopy. Interestingly, piperine displayed a tremendous potential to inhibit the virulence-associated colony morphologies, such as filamentation and wrinkling. Furthermore, piperine regulated morphological transitions between yeast and hyphal forms by inhibiting hyphal extension and swapping hyphal phase to yeast forms yet under filamentation-inducing circumstances. Remarkably, piperine-challenged C. albicans exhibited low potential for spontaneous antibiofilm resistance development. In addition, piperine effectively reduced in vivo colonization and prolonged survival of C. albicans-infected Caenorhabditis elegans, thereby expounding the distinct antivirulent potential. Transcriptomic analysis revealed piperine significantly downregulating the expression of several biofilm related and hyphal-specific genes (ALS3, HWP1, EFG1, CPH1, etc.). Furthermore, no acute toxicity was observed in the HBECs and nematodes exposed to piperine. Altogether, results from this study reveals the potential of piperine to inhibit biofilm and hyphal morphogenesis, and its in vivo efficacy and innocuous nature to HBECs suggests that piperine may be considered as a potential candidate for the treatment of biofilm-associated C. albicans infection, especially for oral candidiasis.
Collapse
|
8
|
Silva LN, de Mello TP, de Souza Ramos L, Branquinha MH, Dos Santos ALS. New and Promising Chemotherapeutics for Emerging Infections Involving Drug-resistant Non-albicans Candida Species. Curr Top Med Chem 2020; 19:2527-2553. [PMID: 31654512 DOI: 10.2174/1568026619666191025152412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 02/06/2023]
Abstract
Fungal infections are a veritable public health problem worldwide. The increasing number of patient populations at risk (e.g. transplanted individuals, cancer patients, and HIV-infected people), as well as the use of antifungal agents for prophylaxis in medicine, have favored the emergence of previously rare or newly identified fungal species. Indeed, novel antifungal resistance patterns have been observed, including environmental sources and the emergence of simultaneous resistance to different antifungal classes, especially in Candida spp., which are known for the multidrug-resistance (MDR) profile. In order to circumvent this alarming scenario, the international researchers' community is engaged in discovering new, potent, and promising compounds to be used in a near future to treat resistant fungal infections in hospital settings on a global scale. In this context, many compounds with antifungal action from both natural and synthetic sources are currently under clinical development, including those that target either ergosterol or β(1,3)-D-glucan, presenting clear evidence of pharmacologic/pharmacokinetic advantages over currently available drugs against these two well-known fungal target structures. Among these are the tetrazoles VT-1129, VT-1161, and VT-1598, the echinocandin CD101, and the glucan synthase inhibitor SCY-078. In this review, we compiled the most recent antifungal compounds that are currently in clinical trials of development and described the potential outcomes against emerging and rare Candida species, with a focus on C. auris, C. dubliniensis, C. glabrata, C. guilliermondii, C. haemulonii, and C. rugosa. In addition to possibly overcoming the limitations of currently available antifungals, new investigational chemical agents that can enhance the classic antifungal activity, thereby reversing previously resistant phenotypes, were also highlighted. While novel and increasingly MDR non-albicans Candida species continue to emerge worldwide, novel strategies for rapid identification and treatment are needed to combat these life-threatening opportunistic fungal infections.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lívia de Souza Ramos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luis Souza Dos Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Yeast Species in the Oral Cavities of Older People: A Comparison between People Living in Their Own Homes and Those in Rest Homes. J Fungi (Basel) 2019; 5:jof5020030. [PMID: 31013697 PMCID: PMC6617379 DOI: 10.3390/jof5020030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Oral candidiasis is prevalent among older people due to predisposing factors such as impaired immune defenses, medications and denture use. An increasing number of older people live in rest home facilities and it is unclear how this institutionalized living affects the quantity and type of fungi colonizing these people's oral cavities. Smears and swabs of the palate and tongue and saliva samples were taken from participants residing in rest homes (RH; n = 20) and older people living in their own homes (OH; n = 20). Yeast in samples were quantified and identified by culturing on CHROMagar Candida and sequencing the ITS2 region of rDNA. A higher proportion of RH residents had Candida hyphae present in smears compared to OH participants (35% vs. 30%) although this difference was not statistically significant (p = 0.74). RH residents had, on average, 23 times as many yeast per mL saliva as OH participants (p = 0.01). Seven yeast species were identified in OH samples and only five in RH samples, with Candida albicans and Candida glabrata being the most common species isolated from both participant groups. The results indicate that older people living in aged-care facilities were more likely to have candidiasis and have a higher yeast carriage rate than similarly aged people living at home. This may be due to morbidities which led to the need for residential care and/or related to the rest home environment.
Collapse
|
10
|
Sinha K, Rule GS. The Structure of Thymidylate Kinase from Candida albicans Reveals a Unique Structural Element. Biochemistry 2017; 56:4360-4370. [DOI: 10.1021/acs.biochem.7b00498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaustubh Sinha
- Department of Biological
Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S. Rule
- Department of Biological
Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Bassi P, Kaur G. Bioadhesive vaginal drug delivery of nystatin using a derivatized polymer: Development and characterization. Eur J Pharm Biopharm 2015; 96:173-84. [DOI: 10.1016/j.ejpb.2015.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 11/28/2022]
|
12
|
Canonico B, Candiracci M, Citterio B, Curci R, Squarzoni S, Mazzoni A, Papa S, Piatti E. Honey flavonoids inhibit Candida albicans morphogenesis by affecting DNA behavior and mitochondrial function. Future Microbiol 2014; 9:445-56. [PMID: 24810344 DOI: 10.2217/fmb.14.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Candida albicans is a pathogenic yeast, which forms a range of polarized and expanded cell shapes. We aimed to determine the correlation between honey extract (HFE) activity and changes in C. albicans cell cycle, morphology and subcellular organelles. MATERIALS & METHODS HFE anticandidal properties were investigated using flow cytometry and scanning electron microscopy. RESULTS Flow cytometry and scanning electron microscopy analyses indicated that HFE may inhibit the growth of the three phenotypes displayed by C. albicans and reduce infection by affecting membrane integrity. HFE affects hyphal transition by reducing the G0/G1 phase and increasing the G2/M phase. Conversely, yeast and pseudohyphae do not appear to be affected. Modifications of vacuolization and mitochondrial activity, during yeast-hypha transition establish the involvement of vacuole and mitochondria. CONCLUSION HFE improved mitochondrial functionality and reduced the vacuolization, modifying the branching process associated with virulence. It is hypothesized that HFE induces changes in cell cycle progress, membrane integrity, mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Earth, Life & Environmental Sciences, Urbino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jebali A, Hajjar FHE, Pourdanesh F, Hekmatimoghaddam S, Kazemi B, Masoudi A, Daliri K, Sedighi N. Silver and gold nanostructures: antifungal property of different shapes of these nanostructures on Candida species. Med Mycol 2014; 52:65-72. [PMID: 23968285 DOI: 10.3109/13693786.2013.822996] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The shape of nanoparticles is an important determinant of their physical and chemical properties, possibly including the little-explored area of their use as antifungal agents. Therefore, we evaluated the in vitro antifungal activities of three different shapes of silver and gold nanostructures, including nanocubes, nanospheres, and nanowires, on Candida albicans, C. glabrata and C. tropicalis, using the microdilution and disk diffusion methods as per the guidelines of the Clinical and Laboratory Standards Institute. We found that silver and gold nanocubes had higher antifungal properties against the test species than nanospheres and nanowires. While some isolates were resistant to silver and gold nanospheres and nanowires, none of the isolates were resistant to silver and gold nanocubes. The occurrence of resistance is a new finding which should be further explored.
Collapse
Affiliation(s)
- Ali Jebali
- Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Oral microbial colonization in children with sickle cell anaemia under long-term prophylaxis with penicillin. Arch Oral Biol 2014; 59:1042-7. [DOI: 10.1016/j.archoralbio.2014.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 02/12/2014] [Accepted: 05/06/2014] [Indexed: 11/18/2022]
|
15
|
Abstract
Candida species are the cause of 60% of all mycoses in immunosuppressed individuals, leading to ∼150,000 deaths annually due to systemic infections, whereas the current antifungal therapies either have toxic side effects or are insufficiently efficient. We performed a screening of two compound libraries, the Enzo and the Institute for Molecular Medicine Finland (FIMM) oncology collection library, for anti-Candida activity based on the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. From a total of 844 drugs, 26 agents showed activity against Candida albicans. Of those, 12 were standard antifungal drugs (SADs) and 7 were off-target drugs previously reported to be active against Candida spp. The remaining 7 off-target drugs, amonafide, tosedostat, megestrol acetate, melengestrol acetate, stanozolol, trifluperidol, and haloperidol, were identified with this screen. The anti-Candida activities of the new agents were investigated by three individual assays using optical density, ATP levels, and microscopy. The antifungal activities of these drugs were comparable to those of the SADs found in the screen. The aminopeptidase inhibitor tosedostat, which is currently in a clinical trial phase for anticancer therapy, displayed a broad antifungal activity against different Candida spp., including Candida glabrata. Thus, this screen reveals agents that were previously unknown to be anti-Candida agents, which allows for the design of novel therapies against invasive candidiasis.
Collapse
|
16
|
Candida dubliniensis endophthalmitis: five cases over 15 years. J Ophthalmic Inflamm Infect 2013; 3:66. [PMID: 24252588 PMCID: PMC3843592 DOI: 10.1186/1869-5760-3-66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/13/2013] [Indexed: 11/22/2022] Open
Abstract
Background Recent studies have shown that the recently identified organism Candida dubliniensis is less pathogenic than the more common Candida albicans. Due to its rare nature, C. dubliniensis has been previously reported as the causative organism in endophthalmitis in only three cases. We undertook a multicenter, retrospective, consecutive case series to describe the clinical features and outcomes of patients with culture-proven C. dubliniensis endophthalmitis. Medical records were reviewed for all patients with C. dubliniensis endophthalmitis on vitreous/aqueous cultures from June 1998 to June 2013 from all public hospitals throughout Queensland, Australia. Results Six eyes from five patients were identified - four males and one female aged from 21 to 55 years (mean 37 years). Four patients were intravenous drug users and four patients had hepatitis C. All five patients were treated with systemic antifungal therapy and intravitreal antifungal injections, and all required vitrectomy. Two eyes developed retinal detachment over the course of the endophthalmitis. Five eyes had visual outcomes of 20/60 or better, and one eye had a poor outcome with final visual acuity of hand movements only. There was no associated mortality, and no infected eyes required enucleation or evisceration. Conclusions C. dubliniensis endophthalmitis is a rare condition which occurs mainly in intravenous drug users and can occur in both HIV-positive and HIV-negative patients. Unlike C. albicans endophthalmitis, C. dubliniensis endophthalmitis has reasonable visual outcomes and does not appear to be associated with high mortality.
Collapse
|
17
|
Li YC, Liang HC, Chen HM, Tan LR, Yi YY, Qin Z, Zhang WM, Wu DW, Li CW, Lin RF, Su ZR, Lai XP. Anti-Candida albicans activity and pharmacokinetics of pogostone isolated from Pogostemonis Herba. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 20:77-83. [PMID: 23159370 DOI: 10.1016/j.phymed.2012.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/08/2012] [Accepted: 08/23/2012] [Indexed: 06/01/2023]
Abstract
The present work was designed to evaluate the in vitro and in vivo anti-Candida activity of pogostone (PO), a natural product isolated from Pogostemon cablin (Blanco) Benth. PO showed potent in vitro activity against clinical Candida spp. isolates tested in this study. PO and the reference drug voriconazole (VRC) were equally effective against all the fluconazole-resistant Candida albicans strains, with MIC ranging from 3.1 μg/ml to 50 μg/ml. Besides, PO was fungicidal against all Candida isolates with MFC ranging from 50 μg/ml to 400 μg/ml. By contrast, VRC was fungistatic as it failed to elicit a fungicidal effect against the Candida spp. isolates at the highest tested concentration (400 μg/ml). Furthermore, oral and topical PO administration effectively reduced the fungal load in vagina of vulvovaginal candidiasis mouse models. Topical PO administration (1.0-4.0 mg/kg) demonstrated higher activity against the vulvovaginal candidiasis than VRC (4.0 mg/kg). The pharmacokinetics and safety profile of PO were also investigated. The pharmacokinetics assay revealed that PO was easily absorbed after oral administration in mice, which might account for its in vivo anti-Candida effect. The acute toxicity test showed that the median lethal dose of PO in mice was 355 mg/kg, which was much higher than the daily dose used for the therapeutic experiments. This study demonstrated the potential of PO as a promising candidate for the treatment of Candida infections, particularly for vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Yu-Cui Li
- College of Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Doxorubicin selects for fluconazole-resistant petite mutants in Candida glabrata isolates. Int J Med Microbiol 2012; 302:155-61. [PMID: 22664377 DOI: 10.1016/j.ijmm.2012.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 01/10/2023] Open
Abstract
Candida infections are a permanent threat to immunocompromised individuals such as cancer patients, and Candida glabrata has emerged as a major problem in recent years. Resistance may develop during lengthy antifungal therapies and is often mediated by upregulation of fungal drug efflux pumps. During chemotherapy the yeast cell is also exposed to cytotoxic agents that may affect its drug susceptibility. Four C. glabrata isolates, three susceptible and one resistant to fluconazole (FLU), were incubated with 20 μg/ml of doxorubicin (DOX) for 90 min. In a second experiment, the isolates were cultured with DOX for ten days. Samples were taken on subsequent days to determine the minimal inhibitory concentration (MIC) of FLU and to analyze expression of CgCDR1, CgCDR2, CgSNQ2 and CgPDR1. Samples were also used to assess the petite phenotype. Short-term DOX exposure did not induce efflux pump gene expression, but genes were consistently overexpressed in FLU-susceptible isolates during long-term exposure. An increase in MIC values on day 6 in two of the isolates coincided with the first occurrence of petite mutants in all susceptible isolates. The respiratory deficiency of selected petite mutants was confirmed by culturing mutants on agar containing glycerol as the sole carbon source. FLU MIC values for respiratory-deficient clones were ≥64 μg/ml, and efflux pump gene expression was greatly increased. The resistant isolate did not develop mitochondrial dysfunction. In summary, the cytotoxic agent DOX selects for FLU-resistant respiratory-deficient C. glabrata mutants, which may affect antifungal therapy.
Collapse
|
19
|
Schulz B, Knobloch M, Moran GP, Weber K, Ruhnke M. Influence of doxorubicin on fluconazole susceptibility and efflux pump gene expression ofCandida dubliniensis. Med Mycol 2012; 50:421-6. [DOI: 10.3109/13693786.2011.608730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Khan Z, Ahmad S, Joseph L, Chandy R. Candida dubliniensis: an appraisal of its clinical significance as a bloodstream pathogen. PLoS One 2012; 7:e32952. [PMID: 22396802 PMCID: PMC3292580 DOI: 10.1371/journal.pone.0032952] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
A nine-year prospective study (2002–2010) on the prevalence of Candida dubliniensis among Candida bloodstream isolates is presented. The germ tube positive isolates were provisionally identified as C. dubliniensis by presence of fringed and rough colonies on sunflower seed agar. Subsequently, their identity was confirmed by Vitek2 Yeast identification system and/or by amplification and sequencing of the ITS region of rDNA. In all, 368 isolates were identified as C. dubliniensis; 67.1% came from respiratory specimens, 11.7% from oral swabs, 9.2% from urine, 3.8% from blood, 2.7% from vaginal swabs and 5.4% from other sources. All C. dubliniensis isolates tested by Etest were susceptible to voriconazole and amphotericin B. Resistance to fluconazole (≥8 µg/ml) was observed in 2.5% of C. dubliniensis isolates, 7 of which occurred between 2008–2010. Of note was the diagnosis of C. dubliniensis candidemia in 14 patients, 11 of them occurring between 2008–2010. None of the bloodstream isolate was resistant to fluconazole, while a solitary isolate showed increased MIC to 5-flucytosine (>32 µg/ml) and belonged to genotype 4. A review of literature since 1999 revealed 28 additional cases of C. dubliniensis candidemia, and 167 isolates identified from blood cultures since 1982. In conclusion, this study highlights a greater role of C. dubliniensis in bloodstream infections than hitherto recognized.
Collapse
Affiliation(s)
- Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | |
Collapse
|
21
|
Microbiological screening of Irish patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy reveals persistence of Candida albicans strains, gradual reduction in susceptibility to azoles, and incidences of clinical signs of oral candidiasis without culture evidence. J Clin Microbiol 2011; 49:1879-89. [PMID: 21367996 DOI: 10.1128/jcm.00026-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) are prone to chronic mucocutaneous candidiasis, which is often treated with azoles. The purpose of this study was to characterize the oral Candida populations from 16 Irish APECED patients, who comprise approximately half the total number identified in Ireland, and to examine the effect of intermittent antifungal therapy on the azole susceptibility patterns of Candida isolates. Patients attended between one and four clinical evaluations over a 5-year period, providing oral rinses and/or oral swab samples each time. Candida was recovered from 14/16 patients, and Candida albicans was the only Candida species identified. Interestingly, clinical diagnosis of candidiasis did not correlate with microbiological evidence of Candida infection at 7/22 (32%) clinical assessments. Multilocus sequence typing analysis of C. albicans isolates recovered from the same patients on separate occasions identified the same sequence type each time. Fluconazole resistance was detected in isolates from one patient, and isolates exhibiting a progressive reduction in itraconazole and/or fluconazole susceptibility were identified in a further 3/16 patients, in each case correlating with the upregulation of CDR- and MDR-encoded efflux pumps. Mutations were also identified in the ERG11 and the TAC1 genes of isolates from these four patients; some of these mutations have previously been associated with azole resistance. The findings suggest that alternative Candida treatment options, other than azoles such as chlorhexidine, should be considered in APECED patients and that clinical diagnosis of oral candidiasis should be confirmed by culture prior to the commencement of anti-Candida therapy.
Collapse
|