1
|
Deblais L, Drozd M, Kumar A, Antwi J, Fuchs J, Khupse R, Helmy YA, Rajashekara G. Identification of novel small molecule inhibitors of twin arginine translocation (Tat) pathway and their effect on the control of Campylobacter jejuni in chickens. Front Microbiol 2024; 15:1342573. [PMID: 38694802 PMCID: PMC11061419 DOI: 10.3389/fmicb.2024.1342573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2023] [Accepted: 03/08/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Control of Campylobacter from farm to fork is challenging due to the frequent emergence of antimicrobial-resistant isolates. Furthermore, poultry production systems are known reservoirs of Campylobacter. The twin-arginine translocation (Tat) pathway is a crucial bacterial secretion system that allows Campylobacter to colonize the host intestinal tract by using formate as the main source of energy. However, Tat pathway is also a major contributing factor for resistance to copper sulfate (CuSO4). Methods Since mammals and chickens do not have proteins or receptors that are homologous to bacterial Tat proteins, identification of small molecule (SM) inhibitors targeting the Tat system would allow the development of safe and effective control methods to mitigate Campylobacter in infected or colonized hosts in both pre-harvest and post-harvest. In this study, we screened 11 commercial libraries (n = 50,917 SM) for increased susceptibility to CuSO4 (1 mM) in C. jejuni 81-176, a human isolate which is widely studied. Results Furthermore, we evaluated 177 SM hits (2.5 μg/mL and above) that increased the susceptibility to CuSO4 for the inhibition of formate dehydrogenase (Fdh) activity, a Tat-dependent substrate. Eight Tat-dependent inhibitors (T1-T8) were selected for further studies. These selected eight Tat inhibitors cleared all tested Campylobacter strains (n = 12) at >10 ng/mL in the presence of 0.5 mM CuSO4in vitro. These selected SMs were non-toxic to colon epithelial (Caco-2) cells when treated with 50 μg/mL for 24 h and completely cleared intracellular C. jejuni cells when treated with 0.63 μg/mL of SM for 24 h in the presence of 0.5 mM of CuSO4. Furthermore, 3 and 5-week-old chicks treated with SM candidates for 5 days had significantly decreased cecal colonization (up to 1.2 log; p < 0.01) with minimal disruption of microbiota. In silico analyses predicted that T7 has better drug-like properties than T2 inhibitor and might target a key amino acid residue (glutamine 165), which is located in the hydrophobic core of TatC protein. Discussion Thus, we have identified novel SM inhibitors of the Tat pathway, which represent a potential strategy to control C. jejuni spread on farms.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| | - Mary Drozd
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Anand Kumar
- Los Alamos National Laboratory, Bioscience Division, Group B-10: Biosecurity and Public Health, Los Alamos, NM, United States
| | - Janet Antwi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - James Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, OH, United States
| | - Yosra A. Helmy
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| |
Collapse
|
2
|
Taylor AJ, Kelly DJ. The function, biogenesis and regulation of the electron transport chains in Campylobacter jejuni: New insights into the bioenergetics of a major food-borne pathogen. Adv Microb Physiol 2019; 74:239-329. [PMID: 31126532 DOI: 10.1016/bs.ampbs.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Campylobacter jejuni is a zoonotic Epsilonproteobacterium that grows in the gastrointestinal tract of birds and mammals, and is the most frequent cause of food-borne bacterial gastroenteritis worldwide. As an oxygen-sensitive microaerophile, C. jejuni has to survive high environmental oxygen tensions, adapt to oxygen limitation in the host intestine and resist host oxidative attack. Despite its small genome size, C. jejuni is a versatile and metabolically active pathogen, with a complex and highly branched set of respiratory chains allowing the use of a wide range of electron donors and alternative electron acceptors in addition to oxygen, including fumarate, nitrate, nitrite, tetrathionate and N- or S-oxides. Several novel enzymes participate in these electron transport chains, including a tungsten containing formate dehydrogenase, a Complex I that uses flavodoxin and not NADH, a periplasmic facing fumarate reductase and a cytochrome c tetrathionate reductase. This review presents an updated description of the composition and bioenergetics of these various respiratory chains as they are currently understood, including recent work that gives new insights into energy conservation during electron transport to various alternative electron acceptors. The regulation of synthesis and assembly of the electron transport chains is also discussed. A deeper appreciation of the unique features of the respiratory systems of C. jejuni may be helpful in informing strategies to control this important pathogen.
Collapse
Affiliation(s)
- Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Wales AD, Vidal AB, Davies RH, Rodgers JD. Field Interventions Against Colonization of Broilers by Campylobacter. Compr Rev Food Sci Food Saf 2018; 18:167-188. [PMID: 33337018 DOI: 10.1111/1541-4337.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
Abstract
Poultry accounts for a high proportion of human campylobacteriosis cases, and the problem of Campylobacter colonization of broiler flocks has proven to be intractable. Owing to their broad host range and genetic instability, Campylobacter organisms are ubiquitous and adaptable in the broiler farm environment, colonizing birds heavily and spreading rapidly after introduction into a flock. This review examines strategies to prevent or suppress such colonization, with a heavy emphasis on field investigations. Attempts to exclude Campylobacter via enhanced biosecurity and hygiene measures have met with mixed success. Reasons for this are becoming better understood as investigations focus on houses, ventilation, biosecurity practices, external operators, and compliance, among other factors. It is evident that piecemeal approaches are likely to fail. Complementary measures include feed and drinking water treatments applied in either preventive or suppressive modes using agents including organic acids and their derivatives, also litter treatments, probiotics, prebiotics, and alterations to diet. Some treatments aim to reduce the number of Campylobacter organisms entering abattoirs by suppressing intestinal colonization just before slaughter; these include acid water treatment or administration of bacteriophages or bacteriocins. Experimental vaccines historically have had little success, but some recent subunit vaccines show promise. Overall, there is wide variation in the control achieved, and consistency and harmonization of trials is needed to enable robust evaluation. There is also some potential to breed for resistance to Campylobacter. Good and consistent control of flock colonization by Campylobacter may require an as-yet undetermined combination of excellent biosecurity plus complementary measures.
Collapse
Affiliation(s)
- Andrew D Wales
- Dept. of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, Univ. of Surrey, Vet School Main Building, Daphne Jackson Road, Guildford, GU2 7AL, U.K
| | - Ana B Vidal
- Veterinary Medicines Directorate, Antimicrobial Resistance Policy and Surveillance Team, Woodham Lane, New Haw, Addlestone, KT15 3LS, U.K
| | - Robert H Davies
- Dept. of Bacteriology and Food Safety, Animal and Plant Health Agency (APHA - Weybridge), Woodham Lane, New Haw, Addlestone, KT15 3NB, U.K
| | - John D Rodgers
- Dept. of Bacteriology and Food Safety, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, KT15 3NB, Surrey, U.K
| |
Collapse
|
4
|
Masanta WO, Zautner AE, Lugert R, Bohne W, Gross U, Leha A, Dakna M, Lenz C. Proteome Profiling by Label-Free Mass Spectrometry Reveals Differentiated Response of Campylobacter jejuni 81-176 to Sublethal Concentrations of Bile Acids. Proteomics Clin Appl 2018; 13:e1800083. [PMID: 30246935 PMCID: PMC6585709 DOI: 10.1002/prca.201800083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2018] [Revised: 08/27/2018] [Indexed: 11/18/2022]
Abstract
Purpose Bile acids are crucial components of the intestinal antimicrobial defense and represent a significant stress factor for enteric pathogens. Adaptation processes of Campylobacter jejuni to this hostile environment are analyzed in this study by a proteomic approach. Experimental design Proteome profiling by label‐free mass spectrometry (SWATH‐MS) has been used to characterize the adaptation of C. jejuni to sublethal concentrations of seven bile acids. Results The bile acids with the lowest inhibitory concentration (IC50), deoxycholic and chenodeoxycholic acid, induce the most significant proteome changes. Overall a downregulation of all basic biosynthetic pathways and a general decrease in the transcription machinery are found. Concurrently, an induction of factors involved in detoxification of reactive oxygen species, protein folding, and bile acid exporting efflux pumps is detected. Exposure to deoxycholic and chenodeoxycholic acid results in an increased expression of components of the more energy‐efficient aerobic respiration pathway, while the anaerobic branches of the electron transport chain are down‐expressed. Conclusions and clinical relevance The results show that C. jejuni has a differentiated system of adaptation to bile acid stresses. The findings enhance the understanding of the pathogenesis of campylobacteriosis, especially for survival of C. jejuni in the human intestine, and may provide clues to future medical treatment.
Collapse
Affiliation(s)
- Wycliffe O Masanta
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany.,Department of Medical Microbiology, Maseno University Medical School, Private Bag, 40105 Maseno, Kenya
| | - Andreas E Zautner
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Raimond Lugert
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uwe Gross
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Mohammed Dakna
- Department of Medical Statistics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Transcriptomic and Phenotypic Analysis Reveals New Functions for the Tat Pathway in Yersinia pseudotuberculosis. J Bacteriol 2016; 198:2876-86. [PMID: 27501981 DOI: 10.1128/jb.00352-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The twin-arginine translocation (Tat) system mediates the secretion of folded proteins that are identified via an N-terminal signal peptide in bacteria, plants, and archaea. Tat systems are associated with virulence in many bacterial pathogens, and our previous studies revealed that Tat-deficient Yersinia pseudotuberculosis was severely attenuated for virulence. Aiming to identify Tat-dependent pathways and phenotypes of relevance for in vivo infection, we analyzed the global transcriptome of parental and ΔtatC mutant strains of Y. pseudotuberculosis during exponential and stationary growth at 26°C and 37°C. The most significant changes in the transcriptome of the ΔtatC mutant were seen at 26°C during stationary-phase growth, and these included the altered expression of genes related to virulence, stress responses, and metabolism. Subsequent phenotypic analysis based on these transcriptome changes revealed several novel Tat-dependent phenotypes, including decreased YadA expression, impaired growth under iron-limited and high-copper conditions, as well as acidic pH and SDS. Several functionally related Tat substrates were also verified to contribute to these phenotypes. Interestingly, the phenotypic defects observed in the Tat-deficient strain were generally more pronounced than those in mutants lacking the Tat substrate predicted to contribute to that specific function. Altogether, this provides new insight into the impact of Tat deficiency on in vivo fitness and survival/replication of Y. pseudotuberculosis during infection. IMPORTANCE In addition to its established role in mediating the secretion of housekeeping enzymes, the Tat system has been recognized as being involved in infection. In some clinically relevant bacteria, such as Pseudomonas spp., several key virulence determinants can readily be identified among the Tat substrates. In enteropathogens, such as Yersinia spp., there are no obvious virulence determinants among the Tat substrates. Tat mutants show no growth defect in vitro but are highly attenuated in in vivo This makes Tat an attractive target for the development of novel antimicrobials. Therefore, it is important to establish the causes of the attenuation. Here, we show that the attenuation is likely due to synergistic effects of different Tat-dependent phenotypes that each contributes to lowered in vivo fitness.
Collapse
|
6
|
Kassem II, Rajashekara G. Formate Dehydrogenase Localization and Activity Are Dependent on an Intact Twin Arginine Translocation System (Tat) inCampylobacter jejuni81-176. Foodborne Pathog Dis 2014; 11:917-9. [DOI: 10.1089/fpd.2014.1797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Issmat I. Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| |
Collapse
|
7
|
Ramasamy S, Abrol R, Suloway CJ, Clemons WM. The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation. Structure 2013; 21:777-88. [PMID: 23583035 PMCID: PMC3653977 DOI: 10.1016/j.str.2013.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2012] [Revised: 02/14/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022]
Abstract
In bacteria, two signal-sequence-dependent secretion pathways translocate proteins across the cytoplasmic membrane. Although the mechanism of the ubiquitous general secretory pathway is becoming well understood, that of the twin-arginine translocation pathway, responsible for translocation of folded proteins across the bilayer, is more mysterious. TatC, the largest and most conserved of three integral membrane components, provides the initial binding site of the signal sequence prior to pore assembly. Here, we present two crystal structures of TatC from the thermophilic bacteria Aquifex aeolicus at 4.0 Å and 6.8 Å resolution. The membrane architecture of TatC includes a glove-shaped structure with a lipid-exposed pocket predicted by molecular dynamics to distort the membrane. Correlating the biochemical literature to these results suggests that the signal sequence binds in this pocket, leading to structural changes that facilitate higher order assemblies.
Collapse
Affiliation(s)
| | - Ravinder Abrol
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christian J.M. Suloway
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
8
|
Respiratory proteins contribute differentially to Campylobacter jejuni's survival and in vitro interaction with hosts' intestinal cells. BMC Microbiol 2012; 12:258. [PMID: 23148765 PMCID: PMC3541246 DOI: 10.1186/1471-2180-12-258] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2012] [Accepted: 11/09/2012] [Indexed: 12/03/2022] Open
Abstract
Background The genetic features that facilitate Campylobacter jejuni’s adaptation to a wide range of environments are not completely defined. However, whole genome expression studies showed that respiratory proteins (RPs) were differentially expressed under varying conditions and stresses, suggesting further unidentified roles for RPs in C. jejuni’s adaptation. Therefore, our objectives were to characterize the contributions of selected RPs to C. jejuni’s i- key survival phenotypes under different temperature (37°C vs. 42°C) and oxygen (microaerobic, ambient, and oxygen-limited/anaerobic) conditions and ii- its interactions with intestinal epithelial cells from disparate hosts (human vs. chickens). Results C. jejuni mutant strains with individual deletions that targeted five RPs; nitrate reductase (ΔnapA), nitrite reductase (ΔnrfA), formate dehydrogenase (ΔfdhA), hydrogenase (ΔhydB), and methylmenaquinol:fumarate reductase (ΔmfrA) were used in this study. We show that only the ΔfdhA exhibited a decrease in motility; however, incubation at 42°C significantly reduced the deficiency in the ΔfdhA’s motility as compared to 37°C. Under all tested conditions, the ΔmfrA showed a decreased susceptibility to hydrogen peroxide (H2O2), while the ΔnapA and the ΔfdhA showed significantly increased susceptibility to the oxidant as compared to the wildtype. Further, the susceptibility of the ΔnapA to H2O2 was significantly more pronounced at 37°C. The biofilm formation capability of individual RP mutants varied as compared to the wildtype. However, the impact of the deletion of certain RPs affected biofilm formation in a manner that was dependent on temperature and/or oxygen concentration. For example, the ΔmfrA displayed significantly deficient and increased biofilm formation under microaerobic conditions at 37°C and 42°C, respectively. However, under anaerobic conditions, the ΔmfrA was only significantly impaired in biofilm formation at 42°C. Additionally, the RPs mutants showed differential ability for infecting and surviving in human intestinal cell lines (INT-407) and primary chicken intestinal epithelial cells, respectively. Notably, the ΔfdhA and the ΔhydB were deficient in interacting with both cell types, while the ΔmfrA displayed impairments only in adherence to and invasion of INT-407. Scanning electron microscopy showed that the ΔhydB and the ΔfdhA exhibited filamentous and bulging (almost spherical) cell shapes, respectively, which might be indicative of defects in cell division. Conclusions We conclude that the RPs contribute to C. jejuni’s motility, H2O2 resistance, biofilm formation, and in vitro interactions with hosts’ intestinal cells. Further, the impact of certain RPs varied in response to incubation temperature and/or oxygen concentration. Therefore, RPs may facilitate the prevalence of C. jejuni in a variety of niches, contributing to the pathogen’s remarkable potential for adaptation.
Collapse
|