1
|
Masaka E, Reed S, Davidson M, Oosthuizen J. Opportunistic Premise Plumbing Pathogens. A Potential Health Risk in Water Mist Systems Used as a Cooling Intervention. Pathogens 2021; 10:pathogens10040462. [PMID: 33921277 PMCID: PMC8068904 DOI: 10.3390/pathogens10040462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Water mist systems (WMS) are used for evaporative cooling in public areas. The health risks associated with their colonization by opportunistic premise plumbing pathogens (OPPPs) is not well understood. To advance the understanding of the potential health risk of OPPPs in WMS, biofilm, water and bioaerosol samples (n = 90) from ten (10) WMS in Australia were collected and analyzed by culture and polymerase chain reaction (PCR) methods to detect the occurrence of five representative OPPPs: Legionella pneumophila, Pseudomonas aeruginosa, Mycobacterium avium, Naegleria fowleri and Acanthamoeba. P. aeruginosa (44%, n = 90) occurred more frequently in samples, followed by L. pneumophila serogroup (Sg) 2–14 (18%, n = 90) and L. pneumophila Sg 1 (6%, n = 90). A negative correlation between OPPP occurrence and residual free chlorine was observed except with Acanthamoeba, rs (30) = 0.067, p > 0.05. All detected OPPPs were positively correlated with total dissolved solids (TDS) except with Acanthamoeba. Biofilms contained higher concentrations of L. pneumophila Sg 2–14 (1000–3000 CFU/mL) than water samples (0–100 CFU/mL). This study suggests that WMS can be colonized by OPPPs and are a potential health risk if OPPP contaminated aerosols get released into ambient atmospheres.
Collapse
|
2
|
Devane ML, Moriarty E, Weaver L, Cookson A, Gilpin B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. WATER RESEARCH 2020; 185:116204. [PMID: 32745743 DOI: 10.1016/j.watres.2020.116204] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In tropical to temperate environments, fecal indicator bacteria (FIB), such as enterococci and Escherichia coli, can persist and potentially multiply, far removed from their natural reservoir of the animal gut. FIB isolated from environmental reservoirs such as stream sediments, beach sand and vegetation have been termed "naturalized" FIB. In addition, recent research suggests that the intestines of poikilothermic animals such as fish may be colonized by enterococci and E. coli, and therefore, these animals may contribute to FIB concentrations in the aquatic environment. Naturalized FIB that are derived from fecal inputs into the environment, and subsequently adapted to maintain their population within the non-host environment are termed "naturalized enteric FIB". In contrast, an additional theory suggests that some "naturalized" FIB diverged from enteric FIB many millions of years ago and are now normal inhabitants of the environment where they are referred to as "naturalized non-enteric FIB". In the case of the Escherichia genus, the naturalized non-enteric members are identified as E. coli during routine water quality monitoring. An over-estimation of the health risk could result when these naturalized, non-enteric FIB, (that is, not derived from avian or mammalian fecal contamination), contribute to water quality monitoring results. It has been postulated that these environmental FIB belonging to the genera Escherichia and Enterococcus can be differentiated from enteric FIB by genetic methods because they lack some of the genes required for colonization of the host intestine, and have acquired genes that aid survival in the environment. Advances in molecular tools such as next generation sequencing will aid the identification of genes peculiar or "enriched" in particular habitats to discriminate between enteric and environmental FIB. In this appraisal, we have reviewed the research studying "naturalized" FIB, and discussed the techniques for their differentiation from enteric FIB. This differentiation includes the important distinction between enteric FIB derived from fresh and non-recent fecal inputs, and those truly non-enteric environmental microbes, which are currently identified as FIB during routine water quality monitoring. The inclusion of tools for the identification of naturalized FIB (enteric or environmental) would be a valuable resource for future studies assessing water quality.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Elaine Moriarty
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Adrian Cookson
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|
3
|
Agustí G, Le Calvez T, Trouilhé MC, Humeau P, Codony F. Presence of Waddlia chondrophila in hot water systems from non-domestic buildings in France. JOURNAL OF WATER AND HEALTH 2018; 16:44-48. [PMID: 29424717 DOI: 10.2166/wh.2017.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The presence of Waddlia chondrophila has been related to respiratory tract infections and human and animal fetal death. Although several sources of infection have been suggested, the actual source remains unknown and limited information exists on the prevalence of W. chondrophila in the environment. This pathogen has been previously detected in well water but its presence has not been confirmed in water networks. Since these bacteria have been detected in water reservoirs, it has been hypothesized that they can access artificial water systems and survive until they find appropriate conditions to proliferate. In this work, their presence in water samples from 19 non-domestic water networks was tested by quantitative polymerase chain reaction (qPCR). Approximately half of the networks (47%) were positive for W. chondrophila and the overall results revealed 20% positive samples (12/59). Furthermore, most of the samples showed low concentrations of the pathogen (<200 genomic units/L). This finding demonstrates that W. chondrophila can colonize some water networks. Therefore, they must be considered as potential infection sources in future epidemiological studies.
Collapse
Affiliation(s)
- Gemma Agustí
- Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain and GenIUL, Carrer de la Ciutat d'Assunción 4, Barcelona 08030, Spain E-mail:
| | - Thomas Le Calvez
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP 82341, Nantes cedex 3 44323, France
| | - Marie-Cecile Trouilhé
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP 82341, Nantes cedex 3 44323, France; Centre Scientifique et Technique du Bâtiment, Direction Opérationnelle HES - Division Canalisations, 84 avenue Jean Jaurès, Champs-sur-Marne, Marne-la-Vallée cedex 2 77447, France
| | - Philippe Humeau
- Centre Scientifique et Technique du Bâtiment, AQUASIM, 11 rue Henri Picherit, BP 82341, Nantes cedex 3 44323, France
| | - Francesc Codony
- Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain and GenIUL, Carrer de la Ciutat d'Assunción 4, Barcelona 08030, Spain E-mail:
| |
Collapse
|
4
|
Bordetella bronchiseptica exploits the complex life cycle of Dictyostelium discoideum as an amplifying transmission vector. PLoS Biol 2017; 15:e2000420. [PMID: 28403138 PMCID: PMC5389573 DOI: 10.1371/journal.pbio.2000420] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Multiple lines of evidence suggest that Bordetella species have a significant life stage outside of the mammalian respiratory tract that has yet to be defined. The Bordetella virulence gene (BvgAS) two-component system, a paradigm for a global virulence regulon, controls the expression of many “virulence factors” expressed in the Bvg positive (Bvg+) phase that are necessary for successful respiratory tract infection. A similarly large set of highly conserved genes are expressed under Bvg negative (Bvg-) phase growth conditions; however, these appear to be primarily expressed outside of the host and are thus hypothesized to be important in an undefined extrahost reservoir. Here, we show that Bvg- phase genes are involved in the ability of Bordetella bronchiseptica to grow and disseminate via the complex life cycle of the amoeba Dictyostelium discoideum. Unlike bacteria that serve as an amoeba food source, B. bronchiseptica evades amoeba predation, survives within the amoeba for extended periods of time, incorporates itself into the amoeba sori, and disseminates along with the amoeba. Remarkably, B. bronchiseptica continues to be transferred with the amoeba for months, through multiple life cycles of amoebae grown on the lawns of other bacteria, thus demonstrating a stable relationship that allows B. bronchiseptica to expand and disperse geographically via the D. discoideum life cycle. Furthermore, B. bronchiseptica within the sori can efficiently infect mice, indicating that amoebae may represent an environmental vector within which pathogenic bordetellae expand and disseminate to encounter new mammalian hosts. These data identify amoebae as potential environmental reservoirs as well as amplifying and disseminating vectors for B. bronchiseptica and reveal an important role for the Bvg- phase in these interactions. Bordetella species are infectious bacterial respiratory pathogens of a range of animals, including humans. Bordetellae grow in two phenotypically distinct “phases,” each specifically expressing a large set of genes. The Bvg+ phase is primarily associated with respiratory tract infection (RTI) and has been well studied. The similarly large set of genes specifically expressed in the Bvg- phase is poorly understood but has been proposed to be involved in some undefined environmental niche. Recently, we reported the presence of Bordetella species in many soil and water sources, indicating extensive exposure to predators. Herein, we show that the Bvg- phase mediates B. bronchiseptica interactions with the common soil predator D. discoideum. Surprisingly, the bacterium not only can evade predation but can propagate and disseminate via the complex developmental process of D. discoideum. After multiple passages and over a million-fold expansion in association with D. discoideum, B. bronchiseptica retained the ability to efficiently colonize mice. The conservation of the genes involved in these two distinct phases raises the possibility of potential environmental sources for the frequently unexplained outbreaks of diseases caused by this and other Bordetella species.
Collapse
|
5
|
Bellehumeur C, Boyle B, Charette SJ, Harel J, L'Homme Y, Masson L, Gagnon CA. Propidium monoazide (PMA) and ethidium bromide monoazide (EMA) improve DNA array and high-throughput sequencing of porcine reproductive and respiratory syndrome virus identification. J Virol Methods 2015; 222:182-91. [PMID: 26129867 PMCID: PMC7119533 DOI: 10.1016/j.jviromet.2015.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 11/29/2022]
Abstract
Pan-viral DNA array (PVDA) and high-throughput sequencing (HTS) are useful tools to identify novel viruses of emerging diseases. However, both techniques have difficulties to identify viruses in clinical samples because of the host genomic nucleic acid content (hg/cont). Both propidium monoazide (PMA) and ethidium bromide monoazide (EMA) have the capacity to bind free DNA/RNA, but are cell membrane-impermeable. Thus, both are unable to bind protected nucleic acid such as viral genomes within intact virions. However, EMA/PMA modified genetic material cannot be amplified by enzymes. In order to assess the potential of EMA/PMA to lower the presence of amplifiable hg/cont in samples and improve virus detection, serum and lung tissue homogenates were spiked with porcine reproductive and respiratory virus (PRRSV) and were processed with EMA/PMA. In addition, PRRSV RT-qPCR positive clinical samples were also tested. EMA/PMA treatments significantly decreased amplifiable hg/cont and significantly increased the number of PVDA positive probes and their signal intensity compared to untreated spiked lung samples. EMA/PMA treatments also increased the sensitivity of HTS by increasing the number of specific PRRSV reads and the PRRSV percentage of coverage. Interestingly, EMA/PMA treatments significantly increased the sensitivity of PVDA and HTS in two out of three clinical tissue samples. Thus, EMA/PMA treatments offer a new approach to lower the amplifiable hg/cont in clinical samples and increase the success of PVDA and HTS to identify viruses.
Collapse
Affiliation(s)
- Christian Bellehumeur
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Steve J Charette
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, QC, Canada; Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Josée Harel
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Yvan L'Homme
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Canadian Food Inspection Agency, Saint-Hyacinthe, QC, Canada
| | - Luke Masson
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; National Research Council Canada, Montréal, QC, Canada
| | - Carl A Gagnon
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
6
|
Ashbolt NJ. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens 2015; 4:390-405. [PMID: 26102291 PMCID: PMC4493481 DOI: 10.3390/pathogens4020390] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Major waterborne (enteric) pathogens are relatively well understood and treatment controls are effective when well managed. However, water-based, saprozoic pathogens that grow within engineered water systems (primarily within biofilms/sediments) cannot be controlled by water treatment alone prior to entry into water distribution and other engineered water systems. Growth within biofilms or as in the case of Legionella pneumophila, primarily within free-living protozoa feeding on biofilms, results from competitive advantage. Meaning, to understand how to manage water-based pathogen diseases (a sub-set of saprozoses) we need to understand the microbial ecology of biofilms; with key factors including biofilm bacterial diversity that influence amoebae hosts and members antagonistic to water-based pathogens, along with impacts from biofilm substratum, water temperature, flow conditions and disinfectant residual—all control variables. Major saprozoic pathogens covering viruses, bacteria, fungi and free-living protozoa are listed, yet today most of the recognized health burden from drinking waters is driven by legionellae, non-tuberculous mycobacteria (NTM) and, to a lesser extent, Pseudomonas aeruginosa. In developing best management practices for engineered water systems based on hazard analysis critical control point (HACCP) or water safety plan (WSP) approaches, multi-factor control strategies, based on quantitative microbial risk assessments need to be developed, to reduce disease from largely opportunistic, water-based pathogens.
Collapse
Affiliation(s)
- Nicholas J Ashbolt
- School of Public Health, University of Alberta, Rm 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada.
| |
Collapse
|
7
|
Lu J, Struewing I, Yelton S, Ashbolt N. Molecular survey of occurrence and quantity of Legionella
spp., Mycobacterium
spp., Pseudomonas aeruginosa
and amoeba hosts in municipal drinking water storage tank sediments. J Appl Microbiol 2015; 119:278-88. [DOI: 10.1111/jam.12831] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/27/2015] [Accepted: 04/10/2015] [Indexed: 01/03/2023]
Affiliation(s)
- J. Lu
- U.S. EPA National Exposure Research Laboratory; Cincinnati OH USA
| | | | | | - N. Ashbolt
- School of Public Health; University of Alberta; Edmonton AB Canada
| |
Collapse
|
8
|
Whiley H, Keegan A, Fallowfield H, Bentham R. The presence of opportunistic pathogens, Legionella spp., L. pneumophila and Mycobacterium avium complex, in South Australian reuse water distribution pipelines. JOURNAL OF WATER AND HEALTH 2015; 13:553-561. [PMID: 26042986 DOI: 10.2166/wh.2014.317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Water reuse has become increasingly important for sustainable water management. Currently, its application is primarily constrained by the potential health risks. Presently there is limited knowledge regarding the presence and fate of opportunistic pathogens along reuse water distribution pipelines. In this study opportunistic human pathogens Legionella spp., L. pneumophila and Mycobacterium avium complex were detected using real-time polymerase chain reaction along two South Australian reuse water distribution pipelines at maximum concentrations of 10⁵, 10³ and 10⁵ copies/mL, respectively. During the summer period of sampling the concentration of all three organisms significantly increased (P < 0.05) along the pipeline, suggesting multiplication and hence viability. No seasonality in the decrease in chlorine residual along the pipelines was observed. This suggests that the combination of reduced chlorine residual and increased water temperature promoted the presence of these opportunistic pathogens.
Collapse
Affiliation(s)
- H Whiley
- Health and the Environment, School of the Environment, Flinders University, GPO BOX 2100, Adelaide 5001, Australia E-mail:
| | - A Keegan
- Australian Water Quality Centre, South Australian Water Corporation, 250 Victoria Square, Adelaide 5000, Australia
| | - H Fallowfield
- Health and the Environment, School of the Environment, Flinders University, GPO BOX 2100, Adelaide 5001, Australia E-mail:
| | - R Bentham
- Health and the Environment, School of the Environment, Flinders University, GPO BOX 2100, Adelaide 5001, Australia E-mail:
| |
Collapse
|
9
|
Abstract
A relatively short list of reference viral, bacterial and protozoan pathogens appears adequate to assess microbial risks and inform a system-based management of drinking waters. Nonetheless, there are data gaps, e.g. human enteric viruses resulting in endemic infection levels if poorly performing disinfection and/or distribution systems are used, and the risks from fungi. Where disinfection is the only treatment and/or filtration is poor, cryptosporidiosis is the most likely enteric disease to be identified during waterborne outbreaks, but generally non-human-infectious genotypes are present in the absence of human or calf fecal contamination. Enteric bacteria may dominate risks during major fecal contamination events that are ineffectively managed. Reliance on culture-based methods exaggerates treatment efficacy and reduces our ability to identify pathogens/indicators; however, next-generation sequencing and polymerase chain reaction approaches are on the cusp of changing that. Overall, water-based Legionella and non-tuberculous mycobacteria probably dominate health burden at exposure points following the various societal uses of drinking water.
Collapse
Affiliation(s)
- Nicholas J. Ashbolt
- School of Public Health, University of Alberta, Edmonton, Room 3-57D, South Academic Building, Alberta, T6G 2G7 Canada
| |
Collapse
|
10
|
Ahlén C, Aas M, Nor A, Wetteland PI, Johansen H, Sørbø T, Sommerfelt-Pettersen JK, Iversen OJ. Legionella pneumophila på Sjøforsvarets fartøyer. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:1445-8. [DOI: 10.4045/tidsskr.12.1459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Codony F, Fittipaldi M, López E, Morató J, Agustí G. Well water as a possible source of Waddlia chondrophila infections. Microbes Environ 2012; 27:529-32. [PMID: 23047147 PMCID: PMC4103567 DOI: 10.1264/jsme2.me12048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Waddlia chondrophila is an emerging pathogen considered as a potential agent of abortion in humans and bovines, and is related with human respiratory disease. Despite these findings, the infection source and transmission pathways have not been identified. The evidence of growth into amoeba suggests water as a possible environmental source. The presence of Waddlia chondrophila was determined in drinking and well water samples (n=70) by quantitative PCR (Q-PCR). Positive results were observed in 10 (25%) of the 40 well samples analyzed; therefore, well water could be a potential reservoir and possible infection source of Waddlia chondrophila in animals and humans.
Collapse
Affiliation(s)
- Francesc Codony
- Laboratori de Microbiologia Sanitària i Mediambiental, Universitat Politècnica de Catalunya, Edifici Gaia-Parc UPC, Rambla Sant Nebridi, 08222 Terrassa, Barcelona, Spain.
| | | | | | | | | |
Collapse
|