1
|
Kim MJ, Yu KL, Han R, Lee Y, Oh K, You JC. Identification of a Non-Nucleoside Reverse Transcriptase Inhibitor against Human Immunodeficiency Virus-1. ACS Infect Dis 2023; 9:1582-1592. [PMID: 37415514 DOI: 10.1021/acsinfecdis.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The HIV-1 infection epidemic remains a global health problem. Current antiretroviral treatments are effective in controlling the progression of a severe infection. However, the emergence of drug resistance requires an urgent identification of new treatment regimes. HIV-1 reverse transcriptase (RTs) has been a successful therapeutic target owing to its high specificity and potent antiviral properties; therefore, it has become an essential component of current HIV-1 standard treatments. This study identified a new HIV-1 RTs inhibitor (Compound #8) that is structurally unique and greatly effective against HIV-1 through chemical library screening and a medicinal chemistry program by analyzing the structure-activity relationship (SAR). Further analysis of molecular docking and mechanisms of action demonstrated that Compound #8 is a novel type of HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI) with a flexible binding mode. Therefore, it exhibits great therapeutic potential when combined with other existing HIV-1 drugs. Our current studies suggest that Compound #8 is a promising novel scaffold for the development of new HIV-1 treatments.
Collapse
Affiliation(s)
- Min-Jung Kim
- Avixgen Inc., 2477 Nambusunhwan-ro, Seocho, Seoul 06725, Republic of Korea
| | - Kyung Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho, Seoul 06591, Republic of Korea
| | - Ri Han
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Ji Chang You
- Avixgen Inc., 2477 Nambusunhwan-ro, Seocho, Seoul 06725, Republic of Korea
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Shchemelev AN, Semenov AV, Ostankova YV, Naidenova EV, Zueva EB, Valutite DE, Churina MA, Virolainen PA, Totolian AA. [Genetic diversity of the human immunodeficiency virus (HIV-1) in the Kaliningrad region]. Vopr Virusol 2022; 67:310-321. [PMID: 36097712 DOI: 10.36233/0507-4088-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION As is currently known, the epidemic process in the Kaliningrad Region was mainly associated with the spread of the recombinant form of HIV-1 (CRF03_AB); however, regular HIV importations from other countries and continents has created favorable conditions for emergence and spread of various recombinant forms of the virus.The most complete information on the diversity of recombinant forms in the region is also necessary to understand the structure of drug resistance (DR). The aim of the study was to explore the HIV-1 genetic diversity in the Kaliningrad Region. MATERIALS AND METHODS We studied 162 blood plasma samples obtained from patients from the Kaliningrad Region, both with confirmed virological failure of antiretroviral therapy (ART) and with newly diagnosed HIV infection. For reverse transcription and amplification of HIV genome fragments, diagnostic «AmpliSense HIVResist-Seq». RESULTS AND DISCUSSION The various recombinants between subtypes A and B (74%) were predominant in study group: recombinant was between CRF03_AB and subtype A (33.95%) and CRF03_AB-like (13.58%) were the most common. Among the "pure" subtypes of the virus, subtype A6 (16.67%). The circulation of subtypes B (3.70%) and G (1.23%) was also noted.Ninety-six patients (59.26%) were identified with at least one mutation associated with antiretroviral (ARV) drug resistance. CONCLUSION The observed diversity of subtypes and recombinant forms of the virus implies that the new recombinants are actively emerging in the studied region, both between existing recombinant forms and "pure" subtypes, as well as between "pure" subtypes.
Collapse
Affiliation(s)
- A N Shchemelev
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A V Semenov
- Ekaterinburg Research Institute of Viral Infections of the Federal Research Institute, State Research Center for Virology and Biotechnology "Vector" of the Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - Yu V Ostankova
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E V Naidenova
- FSSI Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E B Zueva
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D E Valutite
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - M A Churina
- St. Petersburg GBUZ «Botkin Clinical Infectious Diseases Hospital»
| | - P A Virolainen
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A A Totolian
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
3
|
Tachbele E, Kyobe S, Katabazi FA, Kigozi E, Mwesigwa S, Joloba M, Messele A, Amogne W, Legesse M, Pieper R, Ameni G. Genetic Diversity and Acquired Drug Resistance Mutations Detected by Deep Sequencing in Virologic Failures among Antiretroviral Treatment Experienced Human Immunodeficiency Virus-1 Patients in a Pastoralist Region of Ethiopia. Infect Drug Resist 2021; 14:4833-4847. [PMID: 34819737 PMCID: PMC8607991 DOI: 10.2147/idr.s337485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/03/2021] [Indexed: 01/15/2023] Open
Abstract
Purpose This study was conducted to investigate the drug resistance mutations and genetic diversity of HIV-1 in ART experienced patients in South Omo, Ethiopia. Patients and Methods A cross-sectional study conducted on 253 adult patients attending ART clinics for ≥6 months in South Omo. Samples with VL ≥1000 copies/mL were considered as virological failures (VF) and their reverse transcriptase gene codons 90–234 were sequenced using Illumina MiSeq. MinVar was used for the identification of the subtypes and drug resistance mutations. Phylogenetic tree was constructed by neighbor-joining method using the maximum likelihood model. Results The median duration of ART was 51 months and 18.6% (47/253) of the patients exhibited VF. Of 47 viraemic patients, the genome of 41 were sequenced and subtype C was dominant (87.8%) followed by recombinant subtype BC (4.9%), M-09-CPX (4.9) and BF1 (2.4%). Of 41 genotyped subjects, 85.4% (35/41) had at least one ADR mutation. Eighty-one percent (33/41) of viraemic patients harbored NRTI resistance mutations, and 48.8% (20/41) were positive for NNRTI resistance mutations, with 43.9% dual resistance mutations. Among NRTI resistance mutations, M184V (73.2%), K219Q (63.4%) and T215 (56.1%) complex were the most mutated positions, while the most common NNRTI resistance mutations were K103N (24.4%), K101E, P225H and V108I 7.5% each. Active tuberculosis (aOR=13, 95% CI= 3.46–29.69), immunological failure (aOR=3.61, 95% CI=1.26–10.39), opportunistic infections (aOR=8.39, 95% CI= 1.75–40.19), and poor adherence were significantly associated with virological failure, while rural residence (aOR 2.37; 95% CI: 1.62–9.10, P= 0.05), immunological failures (aOR 2.37; 95% CI: 1.62–9.10, P= 0.05) and high viral load (aOR 16; 95% CI: 5.35 51.59, P <0.001) were predictors of ADR mutation among the ART experienced and viraemic study subjects. Conclusion The study revealed considerable prevalence of VF and ADR mutation with the associated risk indicators. Regular virological monitoring and drug resistance genotyping methods should be implemented for better ART treatment outcomes of the nation.
Collapse
Affiliation(s)
- Erdaw Tachbele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.,College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Samuel Kyobe
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Edgar Kigozi
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Moses Joloba
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Alebachew Messele
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wondwossen Amogne
- College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mengistu Legesse
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Ratanabunyong S, Aeksiri N, Yanaka S, Yagi-Utsumi M, Kato K, Choowongkomon K, Hannongbua S. Characterization of New DNA Aptamers for Anti-HIV-1 Reverse Transcriptase. Chembiochem 2020; 22:915-923. [PMID: 33095511 DOI: 10.1002/cbic.202000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Indexed: 11/09/2022]
Abstract
HIV-1 RT is a necessary enzyme for retroviral replication, which is the main target for antiviral therapy against AIDS. Effective anti-HIV-1 RT drugs are divided into two groups; nucleoside inhibitors (NRTI) and non-nucleoside inhibitors (NNRTI), which inhibit DNA polymerase. In this study, new DNA aptamers were isolated as anti-HIV-1 RT inhibitors. The selected DNA aptamer (WT62) presented with high affinity and inhibition against wild-type (WT) HIV-1 RT and gave a KD value of 75.10±0.29 nM and an IC50 value of 84.81±8.54 nM. Moreover, WT62 decreased the DNA polymerase function of K103 N/Y181 C double mutant (KY) HIV-1 RT by around 80 %. Furthermore, the ITC results showed that this aptamer has small binding enthalpies with both WT and KY HIV-1 RTs through which the complex might form a hydrophobic interaction or noncovalent bonding. The NMR result also suggested that the WT62 aptamer could bind with both WT and KY mutant HIV-1 RTs at the connection domain.
Collapse
Affiliation(s)
- Siriluk Ratanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Niran Aeksiri
- Department of Agricultural Sciences, Naresuan University, Phitsanlolok, 65000, Thailand
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS) and, Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, 12 Okazaki, Aichi, 444-8787, Japan
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, 10900, Chatuchak, Bangkok, Thailand.,Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
5
|
Saladini F, Vicenti I. Role of phenotypic investigation in the era of routine genotypic HIV-1 drug resistance testing. Future Virol 2016. [DOI: 10.2217/fvl-2016-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistance can seriously compromise HIV type-1 therapy and decrease therapeutic options. Resistance testing is highly recommended to guide treatment decisions and drug activity can be accurately predicted in the clinical setting through genotypic assays. While phenotypic systems are not suitable for monitoring drug resistance in routine laboratory practice, genotyping can misclassify unusual or complex mutational patterns, particularly with recently approved antivirals. In addition, phenotypic assays remain fundamental for characterizing candidate antiretroviral compounds. This review aims to discuss how phenotypic assays contributed to and still play a role in understanding the mechanisms of resistance of both licensed and investigational HIV type-1 inhibitors.
Collapse
Affiliation(s)
- Francesco Saladini
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| |
Collapse
|
6
|
Medeiros SDO, Abreu CM, Delvecchio R, Ribeiro AP, Vasconcelos Z, Brindeiro RDM, Tanuri A. Follow-up on long-term antiretroviral therapy for cats infected with feline immunodeficiency virus. J Feline Med Surg 2016; 18:264-72. [PMID: 25855689 PMCID: PMC11112254 DOI: 10.1177/1098612x15580144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Feline immunodeficiency virus (FIV) is a lentivirus that induces AIDS-like disease in cats. Some of the antiretroviral drugs available to treat patients with HIV type 1 are used to treat FIV-infected cats; however, antiretroviral therapy (ART) is not used in cats as a long-term treatment. In this study, the effects of long-term ART were evaluated in domestic cats treated initially with the nucleoside transcriptase reverse inhibitor (NTRI) zidovudine (AZT) over a period ranging from 5-6 years, followed by a regimen of the NTRI lamivudine (3TC) plus AZT over 3 years. METHODS Viral load, sequencing of pol (reverse transcriptase [RT]) region and CD4:CD8 lymphocyte ratio were evaluated during and after treatment. Untreated cats were evaluated as a control group. RESULTS CD4:CD8 ratios were lower, and uncharacterized resistance mutations were found in the RT region in the group of treated cats. A slight increase in viral load was observed in some cats after discontinuing treatment. CONCLUSIONS AND RELEVANCE The data strongly suggest that treated cats were resistant to therapy, and uncharacterized resistance mutations in the RT gene of FIV were selected for by AZT. Few studies have been conducted to evaluate the effect of long-term antiretroviral therapy in cats. To date, resistance mutations have not been described in vivo.
Collapse
Affiliation(s)
- Sheila de Oliveira Medeiros
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina Monteiro Abreu
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Delvecchio
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Rodrigo de Moraes Brindeiro
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Focus on Chirality of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. Molecules 2016; 21:molecules21020221. [PMID: 26891289 PMCID: PMC6273187 DOI: 10.3390/molecules21020221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 02/02/2023] Open
Abstract
Chiral HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are of great interest since one enantiomer is often more potent than the corresponding counterpart against the HIV-1 wild type (WT) and the HIV-1 drug resistant mutant strains. This review exemplifies the various studies made to investigate the effect of chirality on the antiretroviral activity of top HIV-1 NNRTI compounds, such as nevirapine (NVP), efavirenz (EFV), alkynyl- and alkenylquinazolinone DuPont compounds (DPC), diarylpyrimidine (DAPY), dihydroalkyloxybenzyloxopyrimidine (DABO), phenethylthiazolylthiourea (PETT), indolylarylsulfone (IAS), arylphosphoindole (API) and trifluoromethylated indole (TFMI) The chiral separation, the enantiosynthesis, along with the biological properties of these HIV-1 NNRTIs, are discussed.
Collapse
|
8
|
Zheng X, Pedersen LC, Gabel SA, Mueller GA, DeRose EF, London RE. Unfolding the HIV-1 reverse transcriptase RNase H domain--how to lose a molecular tug-of-war. Nucleic Acids Res 2016; 44:1776-88. [PMID: 26773054 PMCID: PMC4770237 DOI: 10.1093/nar/gkv1538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/24/2015] [Indexed: 11/14/2022] Open
Abstract
Formation of the mature HIV-1 reverse transcriptase (RT) p66/p51 heterodimer requires subunit-specific processing of the p66/p66' homodimer precursor. Since the ribonuclease H (RH) domain contains an occult cleavage site located near its center, cleavage must occur either prior to folding or subsequent to unfolding. Recent NMR studies have identified a slow, subunit-specific RH domain unfolding process proposed to result from a residue tug-of-war between the polymerase and RH domains on the functionally inactive, p66' subunit. Here, we describe a structural comparison of the isolated RH domain with a domain swapped RH dimer that reveals several intrinsically destabilizing characteristics of the isolated domain that facilitate excursions of Tyr427 from its binding pocket and separation of helices B and D. These studies provide independent support for the subunit-selective RH domain unfolding pathway in which instability of the Tyr427 binding pocket facilitates its release followed by domain transfer, acting as a trigger for further RH domain destabilization and subsequent unfolding. As further support for this pathway, NMR studies demonstrate that addition of an RH active site-directed isoquinolone ligand retards the subunit-selective RH' domain unfolding behavior of the p66/p66' homodimer. This study demonstrates the feasibility of directly targeting RT maturation with therapeutics.
Collapse
Affiliation(s)
- Xunhai Zheng
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Eugene F DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental health Sciences, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
9
|
Oral administration of the nucleoside EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. Antimicrob Agents Chemother 2015; 59:4190-8. [PMID: 25941222 DOI: 10.1128/aac.05036-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/28/2015] [Indexed: 11/20/2022] Open
Abstract
Like normal cellular nucleosides, the nucleoside reverse transcriptase (RT) inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) has a 3'-hydroxyl moiety, and yet EFdA is a highly potent inhibitor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication with activity against a broad range of clinically important drug-resistant HIV isolates. We evaluated the anti-HIV activity of EFdA in primary human cells and in HIV-infected humanized mice. EFdA exhibited excellent potency against HIVJR-CSF in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs), with a 50% inhibitory concentration of 0.25 nM and a selectivity index of 184,000; similar antiviral potency was found against 12 different HIV clinical isolates from multiple clades (A, B, C, D, and CRF01_AE). EFdA was readily absorbed after oral dosing (5 mg/kg of body weight) in both mice and the rhesus macaque, with micromolar levels of the maximum concentration of drug in serum (Cmax) attained at 30 min and 90 min, respectively. Trough levels were at or above 90% inhibitory concentration (IC90) levels in the macaque at 24 h, suggesting once-daily dosing. EFdA showed reasonable penetration of the blood-brain barrier in the rhesus macaque, with cerebrospinal fluid levels at approximately 25% of plasma levels 8 h after single oral dosing. Rhesus PBMCs isolated 24 h following a single oral dose of 5 mg/kg EFdA were refractory to SIV infection due to sufficiently high intracellular EFdA-triphosphate levels. The intracellular half-life of EFdA-triphosphate in PBMCs was determined to be >72 h following a single exposure to EFdA. Daily oral administration of EFdA at low dosage levels (1 to 10 mg/kg/day) was highly effective in protecting humanized mice from HIV infection, and 10 mg/kg/day oral EFdA completely suppressed HIV RNA to undetectable levels within 2 weeks of treatment.
Collapse
|
10
|
Coric P, Turcaud S, Souquet F, Briant L, Gay B, Royer J, Chazal N, Bouaziz S. Synthesis and biological evaluation of a new derivative of bevirimat that targets the Gag CA-SP1 cleavage site. Eur J Med Chem 2013; 62:453-65. [DOI: 10.1016/j.ejmech.2013.01.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/01/2022]
|
11
|
Rimsky L, Van Eygen V, Hoogstoel A, Stevens M, Boven K, Picchio G, Vingerhoets J. 96-week resistance analyses of rilpivirine in treatment-naive, HIV-1-infected adults from the ECHO and THRIVE Phase III trials. Antivir Ther 2013; 18:967-77. [DOI: 10.3851/imp2636] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2013] [Indexed: 10/26/2022]
|
12
|
Murphey-Corb M, Rajakumar P, Michael H, Nyaundi J, Didier PJ, Reeve AB, Mitsuya H, Sarafianos SG, Parniak MA. Response of simian immunodeficiency virus to the novel nucleoside reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine in vitro and in vivo. Antimicrob Agents Chemother 2012; 56:4707-12. [PMID: 22713337 PMCID: PMC3421895 DOI: 10.1128/aac.00723-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/05/2012] [Indexed: 01/13/2023] Open
Abstract
Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) are essential components in first-line therapy for human immunodeficiency virus (HIV) infection. However, long-term treatment with existing NRTIs can be associated with significant toxic side effects and the emergence of drug-resistant strains. The identification of new NRTIs for the continued management of HIV-infected people therefore is paramount. In this report, we describe the response of a primary isolate of simian immunodeficiency virus (SIV) to 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) both in vitro and in vivo. EFdA was 3 orders of magnitude better than tenofovir (TFV), zidovudine (AZT), and emtricitabine (FTC) in blocking replication of SIV in monkey peripheral blood mononuclear cells (PBMCs) in vitro, and in a preliminary study using two SIV-infected macaques with advanced AIDS, it was highly effective at treating SIV infection and AIDS symptoms in vivo. Both animals had 3- to 4-log decreases in plasma virus burden within 1 week of EFdA therapy (0.4 mg/kg of body weight, delivered subcutaneously twice a day) that eventually became undetectable. Clinical signs of disease (diarrhea, weight loss, and poor activity) also resolved within the first month of treatment. No detectable clinical or pathological signs of drug toxicity were observed within 6 months of continuous therapy. Virus suppression was sustained until drug treatment was discontinued, at which time virus levels rebounded. Although the rebound virus contained the M184V/I mutation in the viral reverse transcriptase, EFdA was fully effective in maintaining suppression of mutant virus throughout the drug treatment period. These results suggest that expanded studies with EFdA are warranted.
Collapse
Affiliation(s)
- Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ordonez P, Hamasaki T, Isono Y, Sakakibara N, Ikejiri M, Maruyama T, Baba M. Anti-human immunodeficiency virus type 1 activity of novel 6-substituted 1-benzyl-3-(3,5-dimethylbenzyl)uracil derivatives. Antimicrob Agents Chemother 2012; 56:2581-9. [PMID: 22290950 PMCID: PMC3346622 DOI: 10.1128/aac.06307-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/24/2012] [Indexed: 11/20/2022] Open
Abstract
Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of current combination therapies for human immunodeficiency virus type 1 (HIV-1) infection. In screening of chemical libraries, we found 6-azido-1-benzyl-3-(3,5-dimethylbenzyl)uracil (AzBBU) and 6-amino-1-benzyl-3-(3,5-dimethylbenzyl)uracil (AmBBU) to be highly active and selective inhibitors of HIV-1 replication in vitro. To determine the resistance profiles of these compounds, we conducted a long-term culture of HIV-1-infected MT-4 cells with escalating concentrations of each compound. After serial passages of the infected cells, escape viruses were obtained, and they were more than 500-fold resistant to the uracil derivatives compared to the wild type. Sequence analysis was conducted for RT of the escape viruses at passages 12 and 24. The amino acid mutation Y181C in the polymerase domain of RT was detected for all escape viruses. Docking studies using the crystal structure of RT showed that AmBBU requires the amino acid residues Leu100, Val106, Tyr181, and Trp229 for exerting its inhibitory effect on HIV-1. Four additional amino acid changes (K451R, R461K, T468P, and D471N) were identified in the RNase H domain of RT; however, their precise role in the acquisition of resistance is still unclear. In conclusion, the initial mutation Y181C seems sufficient for the acquisition of resistance to the uracil derivatives AzBBU and AmBBU. Further studies are required to determine the precise role of each mutation in the acquisition of HIV-1 resistance.
Collapse
Affiliation(s)
- Paula Ordonez
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takayuki Hamasaki
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yohei Isono
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Japan
| | - Norikazu Sakakibara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Japan
| | - Masahiro Ikejiri
- Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Japan
| | - Tokumi Maruyama
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Japan
| | - Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
14
|
Prevalence of Drug Resistance and Associated Mutations in a Population of HIV-1(+) Puerto Ricans: 2006-2010. AIDS Res Treat 2012; 2012:934041. [PMID: 22593823 PMCID: PMC3347695 DOI: 10.1155/2012/934041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/30/2012] [Accepted: 02/13/2012] [Indexed: 11/30/2022] Open
Abstract
This is a continuation of our efforts to maintain a record of the evolution of HIV-1 infection in Puerto Rico by monitoring the expression levels of antiretroviral drug-resistance-associated mutations. Samples from 2,500 patients from 2006–2010 were analyzed using the TruGene HIV-1 genotyping kit and the OpenGene DNA sequencing system. Results show that 58.8% of males and 65.3% of females had HIV-1 with resistance to at least one medication. The average number of HIV mutations was 6.0 in males and 6.1 in females. Statistically significant differences between men and women were recorded in the levels of HIV-1 expressed mutations and antiretroviral drug resistance. The most prevalent antiretroviral medication resistance shifted from zalcitabine to nevirapine and efavirenz in the five-year period. M184V and L63P were the dominant mutations for the reverse transcriptase and the protease genes, respectively, but an increase in the incidence of minority mutations was observed.
Collapse
|
15
|
HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J Virol 2012; 86:5885-94. [PMID: 22438533 DOI: 10.1128/jvi.06597-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
As anti-HIV therapy becomes more widely available in developing nations, it is clear that drug resistance will continue to be a major problem. The related viruses HIV-1 and HIV-2 share many of the same resistance pathways to nucleoside reverse transcriptase inhibitors (NRTIs). However, clinical data suggest that while HIV-1 reverse transcriptase (RT) usually uses an ATP-dependent excision pathway to develop resistance to the nucleoside analog zidovudine (AZT), HIV-2 RT does not appear to use this pathway. We previously described data that suggested that wild-type (WT) HIV-2 RT has a much lower ability to excise AZT monophosphate (AZTMP) than does WT HIV-1 RT and suggested that this is the reason that HIV-2 RT more readily adopts an exclusion pathway against AZT triphosphate (AZTTP), while HIV-1 RT is better able to exploit the ATP-dependent pyrophosphorolysis mechanism. However, we have now done additional experiments, which show that while HIV-1 RT can adopt either an exclusion- or excision-based resistance mechanism against AZT, HIV-2 RT can use only the exclusion mechanism. All of our attempts to make HIV-2 RT excision competent did not produce an AZT-resistant RT but instead yielded RTs that were less able to polymerize than the WT. This suggests that the exclusion pathway is the only pathway available to HIV-2.
Collapse
|