1
|
Hogan V, Johnson WE. Unique Structure and Distinctive Properties of the Ancient and Ubiquitous Gamma-Type Envelope Glycoprotein. Viruses 2023; 15:v15020274. [PMID: 36851488 PMCID: PMC9967133 DOI: 10.3390/v15020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
After the onset of the AIDS pandemic, HIV-1 (genus Lentivirus) became the predominant model for studying retrovirus Env glycoproteins and their role in entry. However, HIV Env is an inadequate model for understanding entry of viruses in the Alpharetrovirus, Gammaretrovirus and Deltaretrovirus genera. For example, oncogenic model system viruses such as Rous sarcoma virus (RSV, Alpharetrovirus), murine leukemia virus (MLV, Gammaretrovirus) and human T-cell leukemia viruses (HTLV-I and HTLV-II, Deltaretrovirus) encode Envs that are structurally and functionally distinct from HIV Env. We refer to these as Gamma-type Envs. Gamma-type Envs are probably the most widespread retroviral Envs in nature. They are found in exogenous and endogenous retroviruses representing a broad spectrum of vertebrate hosts including amphibians, birds, reptiles, mammals and fish. In endogenous form, gamma-type Envs have been evolutionarily coopted numerous times, most notably as placental syncytins (e.g., human SYNC1 and SYNC2). Remarkably, gamma-type Envs are also found outside of the Retroviridae. Gp2 proteins of filoviruses (e.g., Ebolavirus) and snake arenaviruses in the genus Reptarenavirus are gamma-type Env homologs, products of ancient recombination events involving viruses of different Baltimore classes. Distinctive hallmarks of gamma-type Envs include a labile disulfide bond linking the surface and transmembrane subunits, a multi-stage attachment and fusion mechanism, a highly conserved (but poorly understood) "immunosuppressive domain", and activation by the viral protease during virion maturation. Here, we synthesize work from diverse retrovirus model systems to illustrate these distinctive properties and to highlight avenues for further exploration of gamma-type Env structure and function.
Collapse
|
2
|
Yang X, Zhao X, Zhu Y, Xun J, Wen Q, Pan H, Yang J, Wang J, Liang Z, Shen X, Liang Y, Lin Q, Liang H, Li M, Chen J, Jiang S, Xu J, Lu H, Zhu H. FBXO34 promotes latent HIV-1 activation by post-transcriptional modulation. Emerg Microbes Infect 2022; 11:2785-2799. [PMID: 36285453 PMCID: PMC9665091 DOI: 10.1080/22221751.2022.2140605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) cannot be completely cured, mainly due to the existence of a latent HIV-1 reservoir. However, our current understanding of the molecular mechanisms underlying the establishment and maintenance of HIV-1 latent reservoir is not comprehensive. Here, using a genome-wide CRISPR-Cas9 activation library screening, we identified E3 ubiquitin ligase F-box protein 34 (FBXO34) and the substrate of FBXO34, heterogeneous nuclear ribonucleoprotein U (hnRNP U) was identified by affinity purification mass spectrometry, as new host factors related to HIV-1 latent maintenance. Overexpression of FBXO34 or knockout of hnRNP U can activate latent HIV-1 in multiple latent cell lines. FBXO34 mainly promotes hnRNP U ubiquitination, which leads to hnRNP U degradation and abolishment of the interaction between hnRNP U and HIV-1 mRNA. In a latently infected cell line, hnRNP U interacts with the ReV region of HIV-1 mRNA through amino acids 1-339 to hinder HIV-1 translation, thereby, promoting HIV-1 latency. Importantly, we confirmed the role of the FBXO34/hnRNP U axis in the primary CD4+ T lymphocyte model, and detected differences in hnRNP U expression levels in samples from patients treated with antiretroviral therapy (ART) and healthy people, which further suggests that the FBXO34/hnRNP U axis is a new pathway involved in HIV-1 latency. These results provide mechanistic insights into the critical role of ubiquitination and hnRNP U in HIV-1 latency. This novel FBXO34/hnRNP U axis in HIV transcription may be directly targeted to control HIV reservoirs in patients in the future.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qin Wen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhimin Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Chen
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shibo Jiang
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongzhou Lu
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Wojdas E, Łopata K, Nowak R, Kimsa‐Dudek M, Łopata P, Mazurek U. Expression profile of human porcine endogenous retrovirus A receptors (HuPAR‐1, HuPAR‐2) and transcription factor activator protein‐2γ (TFAP‐2C) genes in infected human fibroblasts—Model in vitro. Xenotransplantation 2019; 26:e12541. [DOI: 10.1111/xen.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emilia Wojdas
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
- Department of Community Pharmacy, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Krzysztof Łopata
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Roman Nowak
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Magdalena Kimsa‐Dudek
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| | - Paweł Łopata
- AGH University of Science and Technology in Krakow Krakow Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec Medical University of Silesia in Katowice Sosnowiec Poland
| |
Collapse
|
4
|
Liu X, Yang X, Sun W, Wu Q, Song Y, Yuan L, Yang G. Systematic Evolution of Ligands by Exosome Enrichment: A Proof-of-Concept Study for Exosome-Based Targeting Peptide Screening. ACTA ACUST UNITED AC 2018; 3:e1800275. [PMID: 32627374 DOI: 10.1002/adbi.201800275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/04/2018] [Indexed: 11/10/2022]
Abstract
Selection of a peptide that binds preferentially to targeted cells or tissues is a prerequisite for targeted therapy. Although in vivo phage display is a high-throughput method, it is restricted in identifying target ligands specific for different vascular beds. In this study, the exosomes are repurposed for targeting peptide screening. Briefly, the signal peptide region of Lamp2b (a membrane protein on the exosomes) in the N-terminus is engineered to fuse with 10 aa long random peptides, while the C-terminus of Lamp2b is fused with the MS2 coating protein (MCP). Then, the whole Lamp2b-MCP open reading frame (ORF) is further engineered to harbor a 3'UTR sequence consisting of MS2. The resultant exosomes from engineered Lamp2b-MCP expressing cells display the 10 aa peptides on the outside while containing the genetic information inside. By proof-of-principle experiments, the exosomes with different peptides could preferentially distribute to different tissues besides the spleen and liver. Furthermore, detailed target sequences for different tissues are enriched by rounds of selection. In summary, the established novel targeted peptide screening strategy, namely, "exosome display," has broad applicability, especially for displaying and screening targeted peptides for the cells outside the capillary with condense barriers, like the neurons in the brain.
Collapse
Affiliation(s)
- Xiangwei Liu
- Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture Department of Implant Dentistry, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xuekang Yang
- Department of Burn Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xinshi Road NO. 569th, Xi'an, 710038, China
| | - Qi Wu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingliang Song
- Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture Department of Implant Dentistry, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xinshi Road NO. 569th, Xi'an, 710038, China
| | - Guodong Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
5
|
Role of Cysteines in Stabilizing the Randomized Receptor Binding Domains within Feline Leukemia Virus Envelope Proteins. J Virol 2015; 90:2971-80. [PMID: 26719270 DOI: 10.1128/jvi.02544-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Retargeting of gammaretroviral envelope proteins has shown promising results in the isolation of novel isolates with therapeutic potential. However, the optimal conditions required to obtain high-affinity retargeted envelope proteins with narrow tropism are not understood. This study highlights the advantage of constrained peptides within receptor binding domains and validates the random library screening technique of obtaining novel retargeted Env proteins. Using a modified vector backbone to screen the envelope libraries on 143B osteosarcoma cells, three novel and unique retargeted envelopes were isolated. The use of complex disulfide bonds within variable regions required for receptor binding is found within natural gammaretroviral envelope isolates. Interestingly, two of the isolates, named AII and BV2, have a pair of cysteines located within the randomized region of 11 amino acids similar to that identified within the CP Env, an isolate identified in a previous Env library screen on the human renal carcinoma Caki-1 cell line. The amino acids within the randomized region of AII and BV2 envelopes that are essential for viral infection have been identified in this study and include these cysteine residues. Through mutagenesis studies, the putative disulfide bond pairs including and beyond the randomized region were examined. In parallel, the disulfide bonds of CP Env were identified using mass spectrometry. The results indicate that this pair of cysteines creates the structural context to position key hydrophobic (F and W) and basic (K and H) residues critical for viral titer and suggest that AII, BV2, and CP internal cysteines bond together in distinct ways. IMPORTANCE Retargeted gammaretroviral particles have broad applications for therapeutic use. Although great advances have been achieved in identifying new Env-host cell receptor pairs, the rules for designing optimal Env libraries are still unclear. We have found that isolates with an additional pair of cysteines within the randomized region have the highest transduction efficiencies. This emphasizes the importance of considering cysteine pairs in the design of new libraries. Furthermore, our data clearly indicate that these cysteines are essential for viral infectivity by presenting essential residues to the host cell receptor. These studies facilitate the screening of Env libraries for functional entry into target cells, allowing the identification of novel gammaretroviral Envs targeting alternative host cell receptors for gene and protein delivery.
Collapse
|
6
|
Retrovirus glycoprotein functionality requires proper alignment of the ectodomain and the membrane-proximal cytoplasmic tail. J Virol 2013; 87:12805-13. [PMID: 24049172 DOI: 10.1128/jvi.01847-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonnative viral glycoproteins, including Friend murine leukemia virus envelope (F-MLV Env) are actively recruited to HIV-1 assembly sites by an unknown mechanism. Because interactions with the lipid microenvironment at budding sites could contribute to recruitment, we examined the contribution of the hydrophobicity of the F-MLV Env membrane-spanning domain (MSD) to its incorporation into HIV-1 particles. A series of F-MLV Env mutants that added or deleted one, two, or three leucines in the MSD were constructed. All six mutants retained the ability to be incorporated into HIV-1 particles, but the -1L, -2L, -3L, +1L, and +2L mutants were not capable of producing infectious particles. Surprisingly, the +3L Env glycoprotein was able to produce infectious particles and was constitutively fusogenic. However, when the cytoplasmic tail domains (CTDs) in the Env constructs were deleted, all six of the MSD mutants were able to produce infectious particles. Further mutational analyses revealed that the first 10 amino acids of the CTD is a critical regulator of infectivity. A similar phenotype was observed in HIV-1 Env upon addition of leucines in the MSD, with +1 and +2 leucine mutations greatly reducing Env activity, but +3 leucine mutations behaving similar to the wild type. Unlike F-MLV Env (+1L and +2L), HIV-1 Env (+1L and +2L) infectivity was not restored by deletion of the CTD. We hypothesize that the CTD forms a coiled-coil that disrupts the protein's functionality if it is not in phase with the trimer interface of the ectodomain.
Collapse
|
7
|
Zhang X, Sarangi A, Wu DT, Kanduri J, Roth MJ. Gene delivery in a mouse xenograft of a retargeted retrovirus to a solid 143B osteosarcoma. Virol J 2013; 10:194. [PMID: 23767896 PMCID: PMC3689073 DOI: 10.1186/1743-422x-10-194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteosarcomas are the most common primary bone malignancies found in children and adolescents. An optimized system was developed for efficient retroviral gene delivery into solid 143B osteosarcoma tumors in mice using a retargeted Env. In these studies, the viral Env CP was isolated from an in vitro screen of a library of feline leukemia virus Env randomized in the receptor-binding domain and maintained high titer on human 143B osteosarcoma cell line. FINDINGS The vector developed to express the random Env libraries encoded the drug selectable marker neo. To adapt this for studies in live animals, the murine based vector was modified to express the luciferase gene. The bicistronic vector developed expressed both the CP Env and luciferase in the presence of either the MPMV CTE or a WPRE element. Virus bearing the CP FeLV Env variant maintained high titers after concentration allowing for direct visualization of delivery of the luciferase gene in subcutaneous 143B osteosarcoma tumors. CONCLUSION This system serves as a proof-of-concept for the use of novel FeLV Env pseudotyped MLV particles for in vivo gene delivery. Gene delivery and expression of lucerifase from viral particles bearing the CP Env was readily detected in live mice after a single round of intratumor injection.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey–Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|