1
|
Fik-Jaskółka M, Mittova V, Motsonelidze C, Vakhania M, Vicidomini C, Roviello GN. Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics (Basel) 2024; 13:487. [PMID: 38927153 PMCID: PMC11200912 DOI: 10.3390/antibiotics13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed.
Collapse
Affiliation(s)
- Marta Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentina Mittova
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | | | - Malkhaz Vakhania
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Jodidio M, Schwartz RA. Honey therapies for dermatological disorders: more than just a sweet elixir. Int J Dermatol 2024; 63:422-430. [PMID: 38013499 DOI: 10.1111/ijd.16925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Honey possesses antibacterial, anti-inflammatory, and healing properties that benefit wound healing and tissue regeneration. For centuries, honey has been utilized in traditional medicine as a binder or vehicle for creams and lotions and also for therapeutic purposes. The overuse of antibiotics and antimicrobial agents leading to drug resistance has emphasized the resurgence of honey's application in wound care. For many dermatological disorders, there is an interest in developing therapeutics with fewer side effects than traditional therapies and enhanced wound healing abilities to expedite tissue regeneration. This paper reviews the properties and components of honey that contribute to its wound-healing-based applications, the types of honey employed in medicine, and its dermatological applications. Based on the evidence from case reports, clinical trials, and in vitro studies, honey has been characterized as a safe, cost-effective, and readily available treatment option for many skin conditions, including microbial infections, atopic dermatitis, psoriasis, necrotizing fasciitis, ulcers, as well as thermal and other types of wounds.
Collapse
Affiliation(s)
- Maya Jodidio
- Dermatology, Pediatrics and Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Robert A Schwartz
- Dermatology, Pediatrics and Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Dermatology, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
3
|
Cabezas-Mera FS, Atiencia-Carrera MB, Villacrés-Granda I, Proaño AA, Debut A, Vizuete K, Herrero-Bayo L, Gonzalez-Paramás AM, Giampieri F, Abreu-Naranjo R, Tejera E, Álvarez-Suarez JM, Machado A. Evaluation of the polyphenolic profile of native Ecuadorian stingless bee honeys ( Tribe: Meliponini) and their antibiofilm activity on susceptible and multidrug-resistant pathogens: An exploratory analysis. Curr Res Food Sci 2023; 7:100543. [PMID: 37455680 PMCID: PMC10344713 DOI: 10.1016/j.crfs.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.
Collapse
Affiliation(s)
- Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - María Belén Atiencia-Carrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - Irina Villacrés-Granda
- Programa de Doctorado Interuniversitario en Ciencias de la Salud, Universidad de Sevilla, Sevilla, Spain
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - Adrian Alexander Proaño
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Vía a Nayón, Quito, 170124, Ecuador
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Lorena Herrero-Bayo
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Ana M. Gonzalez-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C. Isabel Torres, 21, 39011, Santander, Cantabria, Spain
| | - Reinier Abreu-Naranjo
- Departamento de Ciencias de La Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - José M. Álvarez-Suarez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| |
Collapse
|
4
|
Silva-Beltrán NP, Boon SA, Ijaz MK, McKinney J, Gerba CP. Antifungal activity and mechanism of action of natural product derivates as potential environmental disinfectants. J Ind Microbiol Biotechnol 2023; 50:kuad036. [PMID: 37951298 PMCID: PMC10710307 DOI: 10.1093/jimb/kuad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
There have been a considerable number of antifungal studies that evaluated natural products (NPs), such as medicinal plants and their secondary metabolites, (phenolic compounds, alkaloids), essential oils, and propolis extracts. These studies have investigated natural antifungal substances for use as food preservatives, medicinal agents, or in agriculture as green pesticides because they represent an option of safe, low-impact, and environmentally friendly antifungal compounds; however, few have studied these NPs as an alternative to disinfection/sanitation for indoor air or environmental surfaces. This review summarizes recent studies on NPs as potential fungal disinfectants in different environments and provides information on the mechanisms of inactivation of these products by fungi. The explored mechanisms show that these NPs can interfere with ATP synthesis and Ca++ and K+ ion flow, mainly damaging the cell membrane and cell wall of fungi, respectively. Another mechanism is the reactive oxygen species effect that damages mitochondria and membranes. Inhibition of the overexpression of the efflux pump is another mechanism that involves damage to fungal proteins. Many NPs appear to have potential as indoor environmental disinfectants. ONE-SENTENCE SUMMARY This review shows the latest advances in natural antifungals applied to different indoor environments. Fungi have generated increased tolerance to the mechanisms of traditional antifungals, so this review also explores the various mechanisms of action of various natural products to facilitate the implementation of technology.
Collapse
Affiliation(s)
- Norma Patricia Silva-Beltrán
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
- Departmento de Ciencias de la Salud, Universidad de Sonora, Ciudad Obregón, CP 85010, México
| | - Stephanie A Boon
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, CP 07645, USA
| | - Charles P Gerba
- Department of Environmental Science, Water Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, CP 85745, USA
| |
Collapse
|
5
|
de Freitas MA, da Cruz RP, dos Santos ATL, Almeida-Bezerra JW, Machado AJT, dos Santos JFS, Rocha JE, Boligon AA, Bezerra CF, de Freitas TS, do Nascimento Silva MK, Mendonça ACAM, da Costa JGM, Coutinho HDM, da Cunha FAB, Filho JR, Morais-Braga MFB. HPLC-DAD analysis and antimicrobial activities of Spondias mombin L. (Anacardiaceae). 3 Biotech 2022; 12:61. [PMID: 35186658 PMCID: PMC8818589 DOI: 10.1007/s13205-022-03126-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Spondias mombin is used in the folk medicine for the treatment of diarrhea and dysentery, indicating that extracts obtained from this species may present pharmacological activities against pathogenic microorganisms. The purpose of this work was to investigate the chemical composition and evaluate the antimicrobial activity of extracts obtained from the leaves (aqueous) and bark (hydroethanolic) of S. mombin both as single treatments and in combination with conventional drugs. Following a qualitative chemical prospection, the extracts were analyzed by HPLC-DAD. The antimicrobial activities were evaluated by microdilution. The combined activity of drugs and extracts was verified by adding a subinhibitory concentration of the extract in the presence of variable drug concentrations. The Minimum Fungicidal Concentration (MFC) was determined by a subculture of the microdilution test, while the effect of the in vitro treatments on morphological transition was analyzed by subculture in moist chambers. While the qualitative analysis detected the presence of phenols and flavonoids, the HPLC analysis identified quercetin, caffeic acid, and catechin as major components in the leaf extract, whereas kaempferol and quercetin were found as major compounds in the bark extract. The extracts showed effective antibacterial activities only against the Gram-negative strains. With regard to the combined activity, the leaf extract potentiated the action of gentamicin and imipenem (against Staphylococcus aureus), while the bark extract potentiated the effect of norfloxacin (against S. aureus), imipenem (against Escherichia coli), and norfloxacin (against Pseudomonas aeruginosa). A more significant antifungal (fungistatic) effect was achieved with the bark extract (even though at high concentrations), which further enhanced the activity of fluconazole. The extracts also inhibited the emission of filaments by Candida albicans and Candida tropicalis. Together, these findings suggest that that the extract constituents may act by favoring the permeability of microbial cells to conventional drugs, as well as by affecting virulence mechanisms in Candida strains.
Collapse
|
6
|
Di Mambro T, Vanzolini T, Bruscolini P, Perez-Gaviro S, Marra E, Roscilli G, Bianchi M, Fraternale A, Schiavano GF, Canonico B, Magnani M. A new humanized antibody is effective against pathogenic fungi in vitro. Sci Rep 2021; 11:19500. [PMID: 34593880 PMCID: PMC8484667 DOI: 10.1038/s41598-021-98659-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Invasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp., Cryptococcus spp., and Aspergillus spp. and even if four classes of antifungals are available (Azoles, Echinocandins, Polyenes and Pyrimidine analogues), the side effects of drugs and fungal acquired and innate resistance represent the major hurdles to be overcome. Monoclonal antibodies are powerful tools currently used as diagnostic and therapeutic agents in different clinical contexts but not yet developed for the treatment of invasive fungal infections. In this paper we report the development of the first humanized monoclonal antibody specific for β-1,3 glucans, a vital component of several pathogenic fungi. H5K1 has been tested on C. auris, one of the most urgent threats and resulted efficient both alone and in combination with Caspofungin and Amphotericin B showing an enhancement effect. Our results support further preclinical and clinical developments for the use of H5K1 in the treatment of patients in need.
Collapse
Affiliation(s)
- Tomas Di Mambro
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy ,Diatheva S.R.L, Via Sant’Anna 131/135, 61030 Cartoceto, Italy
| | - Tania Vanzolini
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Pierpaolo Bruscolini
- grid.11205.370000 0001 2152 8769Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sergio Perez-Gaviro
- grid.11205.370000 0001 2152 8769Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain ,grid.11205.370000 0001 2152 8769Departamento de Física Teórica, Universidad de Zaragoza, 50009 Zaragoza, Spain ,grid.467120.6Centro Universitario de la Defensa, 50090 Zaragoza, Spain
| | - Emanuele Marra
- Takis S.R.L, Via di Castel Romano 100, 00128 Rome, Italy
| | | | - Marzia Bianchi
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alessandra Fraternale
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Giuditta Fiorella Schiavano
- grid.12711.340000 0001 2369 7670Department of Humanities, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Barbara Canonico
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Mauro Magnani
- grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy ,Diatheva S.R.L, Via Sant’Anna 131/135, 61030 Cartoceto, Italy
| |
Collapse
|
7
|
Liu Y, Ren H, Wang D, Zhang M, Sun S, Zhao Y. The synergistic antifungal effects of gypenosides combined with fluconazole against resistant Candida albicans via inhibiting the drug efflux and biofilm formation. Biomed Pharmacother 2020; 130:110580. [DOI: 10.1016/j.biopha.2020.110580] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 01/11/2023] Open
|
8
|
Sateriale D, Facchiano S, Colicchio R, Pagliuca C, Varricchio E, Paolucci M, Volpe MG, Salvatore P, Pagliarulo C. In vitro Synergy of Polyphenolic Extracts From Honey, Myrtle and Pomegranate Against Oral Pathogens, S. mutans and R. dentocariosa. Front Microbiol 2020; 11:1465. [PMID: 32849317 PMCID: PMC7396681 DOI: 10.3389/fmicb.2020.01465] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/04/2020] [Indexed: 01/23/2023] Open
Abstract
The increasing incidence rate of oral diseases, the wide spread of antimicrobial resistance, and the adverse effects of conventional antibiotics mean alternative prevention and treatment options are needed to counteract oral pathogens. In this regard, our study aims to evaluate the antibacterial activity of polyphenolic extracts prepared from acacia honey, myrtle leaves, and pomegranate peel against cariogenic bacteria, such as Streptococcus mutans and Rothia dentocariosa. The chemical-physical parameters of acacia honey and the RP-HPLC polyphenolic profile of pomegranate peel extract have been previously described in our studies, while the characterization of myrtle extract, performed by HPLC analysis, is reported here. All the extracts were used singly and in binary combinations to highlight any synergistic effects. Moreover, the extracts were tested in association with amoxicillin to evaluate their ability to reduce the effective dose of this drug in vitro. The values of minimal inhibitory concentrations and minimal bactericidal concentrations have been used to quantitatively measure the antibacterial activity of the single extracts, while the fractional inhibitory concentration index has been considered as predictor of in vitro anticariogenic synergistic effects. Finally, a time-kill curve method allowed for the evaluation of the bactericidal efficacy of the combined extracts. The microbiological tests suggest that acacia honey, myrtle, and pomegranate extracts are able to inhibit the cariogenic bacteria, also with synergistic effects. This study provides useful and encouraging results for the use of natural extract combinations alone or in association with antibiotics (adjuvant therapy) as a valid alternative for the prevention and treatment of oral infectious diseases.
Collapse
Affiliation(s)
- Daniela Sateriale
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Serena Facchiano
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Ettore Varricchio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE, Advanced Biotechnologies s.c.ar.l., Naples, Italy
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
9
|
Al Aboody MS, Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 2020; 9:E45. [PMID: 31991883 PMCID: PMC7168129 DOI: 10.3390/antibiotics9020045] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of fungal infections is growing at an alarming pace and the pathogenesis is still not clearly understood. Recurrence of these fungal diseases is often due to their evolutionary avoidance of antifungal resistance. The development of suitable novel antimicrobial agents for fungal diseases continues to be a major problem in the current clinical field. Hence, it is urgently necessary to develop surrogate agents that are more effective than conventional available drugs. Among the remarkable innovations from earlier investigations on natural-drugs, flavonoids are a group of plant-derived substances capable of promoting many valuable effects on humans. The identification of flavonoids with possible antifungal effects at small concentrations or in synergistic combinations could help to overcome this problem. A combination of flavonoids with available drugs is an excellent approach to reduce the side effects and toxicity. This review focuses on various naturally occurring flavonoids and their antifungal activities, modes of action, and synergetic use in combination with conventional drugs.
Collapse
Affiliation(s)
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Riyadh Region, Majmaah 11952, Saudi Arabia;
| |
Collapse
|
10
|
Gong Y, Li S, Wang W, Li Y, Ma W, Sun S. In vitro and in vivo activity of chelerythrine against Candida albicans and underlying mechanisms. Future Microbiol 2019; 14:1545-1557. [PMID: 31992072 DOI: 10.2217/fmb-2019-0178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: To evaluate whether chelerythrine (CHT) exhibited antifungal activity against Candida albicans in vitro and in vivo and to explore the underlying mechanisms. Materials & methods: Broth microdilution assay and Galleria mellonella model were used to evaluate the antifungal effect in vitro and in vivo, respectively. Mechanism studies were investigated by morphogenesis observation, Fluo-3/AM, DCFH-DA and rhodamine6G assay, respectively. Results: CHT exhibited antifungal activity against C. albicans and preformed biofilms with minimum inhibitory concentrations ranged from 2 to 16 μg/ml. Besides, CHT protected G. mellonella larvae infected by C. albicans. Mechanisms studies revealed that CHT inhibited hyphal growth, increased intracellular calcium concentration, induced accumulation of reactive oxygen species and inhibited drug transporter activity. Conclusion: CHT exhibited antifungal activity against C. albicans.
Collapse
Affiliation(s)
- Ying Gong
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250012, PR China
- Department of Pharmacy, WuXi People’s Hospital Affiliated with Nanjing Medical University, Wuxi, 214023, PR China
| | - Siwen Li
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, PR China
| | - Weixin Wang
- Department of Pharmacy, Taishan Hospital of Shandong Province, Taian, 271000, PR China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
| | - Wenli Ma
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, PR China
- Department of Pharmacy, Feicheng Mining Central Hospital, Feicheng 271608, PR China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, PR China
| |
Collapse
|
11
|
Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochem J 2019; 476:1267-1284. [DOI: 10.1042/bcj20180933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Communications between various organelle–organelles play an essential role in cell survival. The cross-talk between mitochondria and vacuoles comes up with the vital roles of the intercompartmental process. In this study, we found a couple of cell death features, membrane damage, and apoptosis using antimicrobial peptide from American Cockroach. Periplanetasin-4 (LRHKVYGYCVLGP-NH2) is a 13-mer peptide derived from Periplaneta americana and exhibits phosphatidylserine exposure and caspase activation without DNA fragmentation. Apoptotic features without DNA damage provide evidence that this peptide did not interact with DNA directly and exhibited dysfunction of mitochondria and vacuoles. Superoxide radicals were generated from mitochondria and converted to hydrogen peroxide. Despite the enhancement of catalase and total glutathione contents, oxidative damage disrupted intracellular contents. Periplanetasin-4 induced cell death associated with the production of superoxide radicals, calcium uptake in mitochondria and disorder of vacuoles, such as increased permeability and alkalization. While calcium movement from vacuoles to the mitochondria occurred, the cross-talk with these organelles proceeded and the inherent functionality was impaired. To sum up, periplanetasin-4 stimulates superoxide signal along with undermining the mitochondrial functions and interfering in communication with vacuoles.
Collapse
|
12
|
Sateriale D, Scioscia E, Colicchio R, Pagliuca C, Salvatore P, Varricchio E, Grazia Volpe M, Paolucci M, Pagliarulo C. Italian acacia honey exhibits lytic effects against the crayfish pathogens Aphanomyces astaci and Fusarium avenaceum. Lett Appl Microbiol 2018; 68:64-72. [PMID: 30315651 DOI: 10.1111/lam.13085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
This study purpose was to evaluate the in vitro inhibitory properties of Italian acacia honey extracts against pathogenic aquatic oomycete/fungal isolates that cause different diseases in crayfish, resulting in an elevated mortality rate. The antimycotic activity of acacia honey aqueous extracts was evaluated against the strain UEF88662 of Aphanomyces astaci (oomycete) and the strain SMM2 of Fusarium avenaceum (fungus). The extracts preparation was carried out with water by a cheap, not complex and organic solvent-free procedure, with low environmental impact and the higher possibility of large-scale reproducibility. The anti-oomycete and antifungal activities were quantitatively evaluated by growth, survival and sporulation microbiological assays. The extracts displayed a dose-dependent inhibitory efficacy on oomycete and fungal growth and survival, as well as on the production of oomycete and fungal spores. Supported by future in vivo studies, our results encourage the use of natural extracts like honey as innovative tools to counteract mycotic infections. SIGNIFICANCE AND IMPACT OF THE STUDY: The continuous spread of aquatic fungal disease as the 'crayfish plague' and the 'burn spot disease' has severe ecological and commercial repercussions. Critical factor to prevent further spread is the availability of effective antifungals possibility derived from local natural resources to use in innovative strategies of control and eradication of these diseases. This study provides relevant information about the in vitro anti-oomycete and antifungal activity of Italian acacia honey aqueous extracts against two highly infectious and dangerous pathogenic species, Aphanomyces astaci and Fusarium avenaceum, that are responsible for important crayfish diseases.
Collapse
Affiliation(s)
- D Sateriale
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - E Scioscia
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - R Colicchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy
| | - C Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy
| | - P Salvatore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Napoli, Italy.,CEINGE, Advanced Biotechnologies s.c.ar.l., Napoli, Italy
| | - E Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | | | - M Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - C Pagliarulo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
13
|
Câmara CRS, Shi Q, Pedersen M, Zbasnik R, Nickerson KW, Schlegel V. Histone acetylation increases in response to ferulic, gallic, and sinapic acids acting synergistically in vitro to inhibit Candida albicans
yeast-to-hyphae transition. Phytother Res 2018; 33:319-326. [DOI: 10.1002/ptr.6222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 09/03/2018] [Accepted: 09/28/2018] [Indexed: 11/11/2022]
Affiliation(s)
| | - Qinyin Shi
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Matthew Pedersen
- Department of Agronomy and Horticulture; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Richard Zbasnik
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Kenneth W. Nickerson
- School of Biological Sciences; University of Nebraska-Lincoln; Lincoln Nebraska USA
| | - Vicki Schlegel
- Department of Food Science and Technology; University of Nebraska-Lincoln; Lincoln Nebraska USA
| |
Collapse
|
14
|
Green Tea Polyphenols and Padma Hepaten Inhibit Candida albicans Biofilm Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1690747. [PMID: 30363861 PMCID: PMC6186370 DOI: 10.1155/2018/1690747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/06/2018] [Indexed: 12/02/2022]
Abstract
Candida albicans (C. albicans) is the most prevalent opportunistic human pathogenic fungus and can cause mucosal membrane infections and invade the blood. In the oral cavity, it can ferment dietary sugars, produce organic acids and therefore has a role in caries development. In this study, we examined whether the polyphenol rich extractions Polyphenon from green tea (PPFGT) and Padma Hepaten (PH) can inhibit the caries-inducing properties of C. albicans. Biofilms of C. albicans were grown in the presence of PPFGT and PH. Formation of biofilms was tested spectrophotometrically after crystal violet staining. Exopolysaccharides (EPS) secretion was quantified using confocal scanning laser microscopy (CSLM). Treated C. albicans morphology was demonstrated using scanning electron microscopy (SEM). Expression of virulence-related genes was tested using qRT-PCR. Development of biofilm was also tested on an orthodontic surface (Essix) to assess biofilm inhibition ability on such appliances. Both PPFGT and PH dose-dependently inhibited biofilm formation, with no inhibition on planktonic growth. The strongest inhibition was obtained using the combination of the substances. Crystal violet staining showed a significant reduction of 45% in biofilm formation using a concentration of 2.5mg/ml PPFGT and 0.16mg/ml PH. A concentration of 1.25 mg/ml PPFGT and 0.16 mg/ml PH inhibited candidal growth by 88% and EPS secretion by 74% according to CSLM. A reduction in biofilm formation and in the transition from yeast to hyphal morphotype was observed using SEM. A strong reduction was found in the expression of hwp1, eap1, and als3 virulence associated genes. These results demonstrate the inhibitory effect of natural PPFGT polyphenolic extraction on C. albicans biofilm formation and EPS secretion, alone and together with PH. In an era of increased drug resistance, the use of phytomedicine to constrain biofilm development, without killing host cells, may pave the way to a novel therapeutic concept, especially in children as orthodontic patients.
Collapse
|
15
|
Bezerra CF, Rocha JE, Nascimento Silva MKD, de Freitas TS, de Sousa AK, dos Santos ATL, da Cruz RP, Ferreira MH, da Silva JCP, Machado AJT, Carneiro JNP, Sales DL, Coutinho HDM, Ribeiro PRV, de Brito ES, Morais-Braga MFB. Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.). Food Chem Toxicol 2018; 119:122-132. [DOI: 10.1016/j.fct.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
|
16
|
Action mechanism of naphthofuranquinones against fluconazole-resistant Candida tropicalis strains evidenced by proteomic analysis: The role of increased endogenous ROS. Microb Pathog 2018; 117:32-42. [DOI: 10.1016/j.micpath.2017.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023]
|
17
|
Ahmed S, Sulaiman SA, Baig AA, Ibrahim M, Liaqat S, Fatima S, Jabeen S, Shamim N, Othman NH. Honey as a Potential Natural Antioxidant Medicine: An Insight into Its Molecular Mechanisms of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8367846. [PMID: 29492183 PMCID: PMC5822819 DOI: 10.1155/2018/8367846] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022]
Abstract
Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1β, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research.
Collapse
Affiliation(s)
- Sarfraz Ahmed
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Siti Amrah Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| | - Atif Amin Baig
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Darul Iman, Kuala Terengganu, 20400 Terengganu, Malaysia
| | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Liaqat
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saira Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sadia Jabeen
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Nighat Shamim
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Nor Hayati Othman
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kelantan, Malaysia
| |
Collapse
|
18
|
Lee W, Lee DG. Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic Res 2017; 52:39-50. [PMID: 29157011 DOI: 10.1080/10715762.2017.1407412] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Dong Gun Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
19
|
Morais-Braga MF, Carneiro JN, Machado AJ, Sales DL, dos Santos AT, Boligon AA, Athayde ML, Menezes IR, Souza DS, Costa JG, Coutinho HD. Phenolic composition and medicinal usage of Psidium guajava Linn.: Antifungal activity or inhibition of virulence? Saudi J Biol Sci 2017; 24:302-313. [PMID: 28149166 PMCID: PMC5272930 DOI: 10.1016/j.sjbs.2015.09.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022] Open
Abstract
Psidium guajava is a Myrtaceae plant whose medicinal properties are recognized in several locations. The use of teas and tinctures prepared from their leaves has been used to combat infections caused by fungi of the genus Candida. In this study, aqueous extracts of leaves and hydroethanolic were tested to verify the antifungal potential and its chemical composition has been investigated. The microbiological assays were performed by broth microdilution to determine the minimum inhibitory concentration (MIC) and from these the minimum fungicidal concentration was performed (MFC) by subculturing on solid media. A cell viability curve was obtained for demonstration of inhibition of fungal growth of strains of Candida albicans and Candida tropicalis. Tests to check morphological changes by the action of the extracts were performed in microcultive cameras depleted environment at concentrations of MIC/2, MIC and MIC × 2. Extracts analyzed by high performance liquid chromatography demonstrated flavonoids and phenolic acids. The extracts showed fungistatic effect and no fungicide with MIC >8192 μg/mL, MFC above 8192 μg/mL. The IC50 was calculated ranging from 1803.02 to 5623.41 μg/mL. It has been found that the extracts affect the morphological transition capability, preventing the formation of pseudohyphae and hyphae. Teas and tinctures, therefore, have the potential antifungal, by direct contact, causing inhibition of fungal multiplication and its virulence factor, the cell dimorphism, preventing tissue invasion. Further studies are needed to elucidate the biochemical pathways and genes assets involved in these processes.
Collapse
Affiliation(s)
| | - Joara N.P. Carneiro
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Antonio J.T. Machado
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Débora L. Sales
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | | | - Aline A. Boligon
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Rio Grande do sul, Brazil
| | - Margareth L. Athayde
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Rio Grande do sul, Brazil
| | - Irwin R.A. Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Djair S.L. Souza
- ESAM, Federal University of the Semi Arid, Mossoró, Rio Grande do Norte, Brazil
| | - José G.M. Costa
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | | |
Collapse
|
20
|
McLoone P, Oluwadun A, Warnock M, Fyfe L. Honey: A Therapeutic Agent for Disorders of the Skin. Cent Asian J Glob Health 2016; 5:241. [PMID: 29138732 PMCID: PMC5661189 DOI: 10.5195/cajgh.2016.241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Problems with conventional treatments for a range of dermatological disorders have led scientists to search for new compounds of therapeutic value. Efforts have included the evaluation of natural products such as honey. Manuka honey, for example, has been scientifically recognised for its anti-microbial and wound healing properties and is now used clinically as a topical treatment for wound infections. In this review, scientific evidence for the effectiveness of honey in the treatment of wounds and other skin conditions is evaluated. A plethora of in vitro studies have revealed that honeys from all over the world have potent antimicrobial activity against skin relevant microbes. Moreover, a number of in vitro studies suggest that honey is able to modulate the skin immune system. Clinical research has shown honey to be efficacious in promoting the healing of partial thickness burn wounds while its effectiveness in the treatment of non-burn acute wounds and chronic wounds is conflicted. Published research investigating the efficacy of honey in the treatment of other types of skin disorders is limited. Nevertheless, positive effects have been reported, for example, kanuka honey from New Zealand was shown to have therapeutic value in the treatment of rosacea. Anti-carcinogenic effects of honey have also been observed in vitro and in a murine model of melanoma. It can be concluded that honey is a biologically active and clinically interesting substance but more research is necessary for a comprehensive understanding of its medicinal value in dermatology.
Collapse
Affiliation(s)
- Pauline McLoone
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Afolabi Oluwadun
- Department of Medical Microbiology and Parasitology Olabisi Onabanjo University, Sagamu, Ogun State, Nigeria
| | - Mary Warnock
- Dietetics, Nutrition and Biological Sciences, Queen Margaret University, Musselburgh, East Lothian, Scotland, United Kingdom
| | - Lorna Fyfe
- Dietetics, Nutrition and Biological Sciences, Queen Margaret University, Musselburgh, East Lothian, Scotland, United Kingdom
| |
Collapse
|
21
|
Oryan A, Alemzadeh E, Moshiri A. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis. J Tissue Viability 2016; 25:98-118. [PMID: 26852154 DOI: 10.1016/j.jtv.2015.12.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/01/2015] [Accepted: 12/09/2015] [Indexed: 01/10/2023]
Abstract
For thousands of years, honey has been used for medicinal applications. The beneficial effects of honey, particularly its anti-microbial activity represent it as a useful option for management of various wounds. Honey contains major amounts of carbohydrates, lipids, amino acids, proteins, vitamin and minerals that have important roles in wound healing with minimum trauma during redressing. Because bees have different nutritional behavior and collect the nourishments from different and various plants, the produced honeys have different compositions. Thus different types of honey have different medicinal value leading to different effects on wound healing. This review clarifies the mechanisms and therapeutic properties of honey on wound healing. The mechanisms of action of honey in wound healing are majorly due to its hydrogen peroxide, high osmolality, acidity, non-peroxide factors, nitric oxide and phenols. Laboratory studies and clinical trials have shown that honey promotes autolytic debridement, stimulates growth of wound tissues and stimulates anti-inflammatory activities thus accelerates the wound healing processes. Compared with topical agents such as hydrofiber silver or silver sulfadiazine, honey is more effective in elimination of microbial contamination, reduction of wound area, promotion of re-epithelialization. In addition, honey improves the outcome of the wound healing by reducing the incidence and excessive scar formation. Therefore, application of honey can be an effective and economical approach in managing large and complicated wounds.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Esmat Alemzadeh
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Moshiri
- RAZI Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Morais-Braga MFB, Carneiro JNP, Machado AJT, Sales DL, Brito DI, Albuquerque RS, Boligon AA, Athayde ML, Calixto Júnior JT, Souza DSL, Lima EO, Menezes IRA, Costa JGM, Ferreira FS, Coutinho HDM. High-Performance Liquid Chromatography-Diodic Array Detector, Fungistatic, and Anti-Morphogenical Analysis of Extracts from Psidium brownianum Mart. ex DC. Against Yeasts of the Genus Candida. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1079786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Joara N. P. Carneiro
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Antonio J. T. Machado
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Débora L. Sales
- Department of Biological Sciences, Regional University of Cariri, Crato, Ceará, Brazil
| | - Dara I.V. Brito
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | | | - Aline A. Boligon
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Rio Grande do sul, Brazil
| | - Margareth L. Athayde
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Rio Grande do sul, Brazil
| | | | - Djair S. L. Souza
- ESAM, Federal University of the Semi Arid, Mossoró, Rio Grande do Norte, Brazil
| | - Edeltrudes O. Lima
- Laboratory of Micology, Federal University of Paraíba, João Pessoa, Paraiba, Brazil
| | - Irwin R. A. Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - José G. M. Costa
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Felipe S. Ferreira
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | | |
Collapse
|
23
|
Honey: A realistic antimicrobial for disorders of the skin. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 49:161-7. [PMID: 25732699 DOI: 10.1016/j.jmii.2015.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 02/07/2023]
Abstract
Resistance of pathogenic microorganisms to antibiotics is a serious global health concern. In this review, research investigating the antimicrobial properties of honeys from around the world against skin relevant microbes is evaluated. A plethora of in vitro studies have revealed that honeys from all over the world have potent microbicidal activity against dermatologically important microbes. Moreover, in vitro studies have shown that honey can reduce microbial pathogenicity as well as reverse antimicrobial resistance. Studies investigating the antimicrobial properties of honey in vivo have been more controversial. It is evident that innovative research is required to exploit the antimicrobial properties of honey for clinical use and to determine the efficacy of honey in the treatment of a range of skin disorders with a microbiological etiology.
Collapse
|