1
|
Bozorgchami N, Ahmadzadeh M, Hatamabadi D, Yazdani A, Shahhosseini S, Mohit E. Preparation, Characterization, and Radiolabeling of Anti-HER2 scFv With Technetium Tricarbonyl and Stability Studies. J Labelled Comp Radiopharm 2024; 67:168-179. [PMID: 38485465 DOI: 10.1002/jlcr.4090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 05/14/2024]
Abstract
Breast cancer is the most common diagnosed cancer, and the second cause of cancer death among women, worldwide. HER2 overexpression occurred in approximately 15% to 20% of breast cancers. Invasive biopsy method has been used for detection of HER2 overexpression. HER2-targeted imaging via an appropriate radionuclide is a promising method for sensitive and accurate identification of HER2+ primary and metastatic lesions. 99mTc-anti-HER2 scFv can specifically target malignancies and be used for diagnosis of the cancer type and metastasis as well as treatment of breast cancer. We radiolabeled anti-HER2 scFv that was expressed in Escherichia coli and purified through Ni-NTA resin under native condition with 99mTc-tricarbonyl formed from boranocarbonate. HER2-based ELISA, BCA, TLC, and HPLC were used in this study. In the current study, anti-HER2 scFv was lyophilized before radiolabeling. It was found that freeze-drying did not change the binding activity of anti-HER2 scFv to HER2. Results demonstrated direct anti-HER2 scFv radiolabeling by 99mTc-tricarbonyl to hexahistidine sequence (His-tag) without any changes in biological activity and radiochemical purity of around 98%. Stability analysis revealed that 99mTc-anti-HER2 scFv is stable for at least 24 h in PBS buffer, normal saline, human plasma proteins, and histidine solution.
Collapse
Affiliation(s)
- Negar Bozorgchami
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ahmadzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food and Drug Laboratory Research Center, Food and Drug Administration, The Ministry of Health and Medical Education, Tehran, Iran
| | - Dara Hatamabadi
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Yazdani
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Department of Pharmaceutical Chemistry and Radiopharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Pandey M, Wen PX, Ning GM, Xing GJ, Wei LM, Kumar D, Mayuren J, Candasamy M, Gorain B, Jain N, Gupta G, Dua K. Intraductal delivery of nanocarriers for ductal carcinoma in situ treatment: a strategy to enhance localized delivery. Nanomedicine (Lond) 2022; 17:1871-1889. [PMID: 36695306 DOI: 10.2217/nnm-2022-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ductal carcinoma in situ describes the most commonly occurring, noninvasive malignant breast disease, which could be the leading factor in invasive breast cancer. Despite remarkable advancements in treatment options, poor specificity, low bioavailability and dose-induced toxicity of chemotherapy are the main constraint. A unique characteristic of nanocarriers may overcome these problems. Moreover, the intraductal route of administration serves as an alternative approach. The direct nanodrug delivery into mammary ducts results in the accumulation of anticancer agents at targeted tissue for a prolonged period with high permeability, significantly decreasing the tumor size and improving the survival rate. This review focuses mainly on the intraductal delivery of nanocarriers in treating ductal carcinoma in situ, together with potential clinical translational research.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.,Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Pung Xiau Wen
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Giam Mun Ning
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Gan Jia Xing
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Liu Man Wei
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 602105, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Wei J, Gao Y. Early disease biomarkers can be found using animal models urine proteomics. Expert Rev Proteomics 2021; 18:363-378. [PMID: 34058951 DOI: 10.1080/14789450.2021.1937133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Early disease detection is a prerequisite for early intervention. Urine is not subjected to homeostatic control, and therefore, it accumulates very early changes associated with disease processes, some of which may be used as biomarkers. Animal models must be used to identify urinary changes associated with very early stages of diseases to avoid potential interfering factors and obtain urine samples at a sufficiently early time point before pathological or clinical manifestations occur. AREAS COVERED We reviewed recent (from 2009-2020) urine proteome studies using animal models of many diseases. We focused on early changes in urine proteome of animal models, particularly changes occurring prior to alterations in blood tests, light microscopy observations and clinical manifestations. Additional studies relevant to the topic were also extracted from the references of the cited papers. Changes in the urine proteome at different disease stages and the ability of the urine proteome to differentiate among different animal models are also discussed in this review. EXPERT COMMENTARY Urine proteomes of animal models may reflect early changes that occur even before changes in blood parameters, light microscopy observations and clinical manifestations, suggesting the potential use of urinary biomarkers for the very early detection of human diseases.
Collapse
Affiliation(s)
- Jing Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, China
| |
Collapse
|
4
|
Potential of Using Cell-Free DNA and miRNA in Breast Milk to Screen Early Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8126176. [PMID: 32714986 PMCID: PMC7354639 DOI: 10.1155/2020/8126176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Objective An ideal sample source is critical for more reliable and sensitive early detection of nucleic acid changes associated with breast cancer. Breast milk (BM) is a good noninvasive origin for genetic testing of early breast cancer, but cells in BM are easily disintegrated. So we investigate here whether cell-free nucleic acid (cfNA) exists in BM in a more stable form and whether the quality of BM cfNA is good enough for genetic testing. Methods A self-designed qRT-PCR method was used to measure the existence and abundance of cfDNA. Quality of cfDNA and cfRNA were detected by capillary electrophoresis. Whole genome bisulfite sequencing and miRNA sequencing were used to explore the sources of cfDNA and cell-free miRNA in BM. The copy number analysis and z-test based on whole genome sequencing data were used to determine the integrity of genetic information in BM cfNA. Results We found that cell-free DNA and miRNA exist in the studied breast milk samples in a stable form that can tolerate incubation of BM at room temperature for at least 7 days. These cell-free nucleic acids come mainly from breast-derived cells and contain genetic information as good integrity as in BM cells. We further listed some candidate miRNAs as potential biomarkers for research of early breast cancer screening by analysis of previous reports and our data. Conclusions Our results suggest that cfDNA and cell-free miRNA in BM might be new noninvasive sample sources for finding early alterations of nucleic acid associated with the initiation and progression of breast cancer.
Collapse
|
5
|
Halbony H, Salman K, Alqassieh A, Albrezat M, Hamdan A, Abualhaija'a A, Alsaeidi O, Masad Melhem J, Sagiroglu J, Alimoglu O. Breast cancer epidemiology among surgically treated patients in Jordan: A retrospective study. Med J Islam Repub Iran 2020; 34:73. [PMID: 33306068 PMCID: PMC7711030 DOI: 10.34171/mjiri.34.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Indexed: 11/09/2022] Open
Abstract
Background: Multiple risk factors contribute to the development of breast cancer, including age, positive family history, early menarche, late menopause and the strongest factor being female gender. In this study, we aimed to investigate the proportion of breast cancer patients with certain risk factors, the prevalence of each cancer type, in addition to the surgical procedures performed.
Methods: The medical records of patients diagnosed with breast cancer from January 2010 to November 2015 were evaluated retrospectively regarding demographics, breast cancer risk factors, comorbidities, diagnostic methods, tumor location, cancer type and stage, pathological findings, tumor markers, harvested lymph nodes and the types of surgical procedures. The collected data were statistically analyzed as number, mean, and frequency as percentages. Cases with deficient medical records were excluded from the analysis of certain parameters.
Results: The sample consisted of 120 patients, 118 (98.3%) of whom were women. The mean age was 56.5±12.0 years. The most common diagnostic method at presentation was self-exam in 93.3% of patients. Invasive ductal carcinoma was the most common type of tumor (80.0%). The pathological stages could be determined for only 106 patients, and 26 patients (24.5%) were at stage 1 disease, 45 patients (42.5%) were at stage 2 whereas 34 patients (32.1%) were at stage 3. According to the results of pathological examinations, 72.6% (85 patients) of the cases were estrogen receptor positive, 61.2% (71 patients) were progesterone receptor positive while 24.8% (27 patients) were HER positive. Modified radical mastectomy (MRM) was performed in 52 (43.3%) patients and wide local excision (WLE) was preferred in 46 (38.3%) cases.
Conclusion: Advanced age, positive family history, and prolonged estrogen exposure were remarkable in the majority of patients. Moreover, the most common type of breast cancer was invasive ductal carcinoma, and around half of the patients presented at stage 2 disease. Modified radical mastectomy and WLE were the most commonly performed surgical procedures.
Collapse
Affiliation(s)
- Hala Halbony
- University of Jordan, Faculty of Medicine, Amman, Jordan
| | - Khadija Salman
- University of Jordan, General Surgery Department, Amman, Jordan
| | - Ahmad Alqassieh
- University of Jordan, General Surgery Department, Amman, Jordan
| | - Mutaz Albrezat
- University of Jordan, General Surgery Department, Amman, Jordan
| | - Ahmad Hamdan
- Istanbul Medeniyet University, Goztepe Research and Training Hospital, General Surgery Department, Istanbul, Turkey
| | - Ali Abualhaija'a
- Istanbul Medeniyet University, Goztepe Research and Training Hospital, General Surgery Department, Istanbul, Turkey
| | - Omar Alsaeidi
- Istanbul Medeniyet University, Goztepe Research and Training Hospital, General Surgery Department, Istanbul, Turkey
| | | | - Julide Sagiroglu
- Istanbul Medeniyet University, Goztepe Research and Training Hospital, General Surgery Department, Istanbul, Turkey
| | - Orhan Alimoglu
- University of Jordan, General Surgery Department, Amman, Jordan
| |
Collapse
|
6
|
Wang YM, Trinh MP, Zheng Y, Guo K, Jimenez LA, Zhong W. Analysis of circulating non-coding RNAs in a non-invasive and cost-effective manner. Trends Analyt Chem 2019; 117:242-262. [PMID: 32292220 PMCID: PMC7156030 DOI: 10.1016/j.trac.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs (ncRNAs) participate in regulation of gene expression, and are highly relevant to pathological development. They are found to be stably present in diverse body fluids, including those in the circulatory system, which can be sampled non-invasively for clinical tests. Thus, circulating ncRNAs have great potential to be disease biomarkers. However, tremendous efforts are desired to discover and utilize ncRNAs as biomarkers in clinical diagnosis, calling for technological advancement in analysis of circulating ncRNAs in biospecimens. Hence, this review summarizes the recent developments in this area, highlighting the works devoted to cancer diagnosis and prognosis. Three main directions are focused: 1) Extraction and purification of ncRNAs from body fluids; 2) Quantification of the purified circulating ncRNAs; and 3) Microfluidic platforms for integration of both steps to enable point-of-care diagnostics. These technologies have laid a solid foundation to move forward the applications of circulating ncRNAs in disease diagnosis and cure.
Collapse
Affiliation(s)
- Yu-Min Wang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, P. R. China
| | - Michael Patrick Trinh
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Kaizhu Guo
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Luis A. Jimenez
- Program in Biomedical Sciences, University of California at Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Tumor Extracellular Matrix Remodeling: New Perspectives as a Circulating Tool in the Diagnosis and Prognosis of Solid Tumors. Cells 2019; 8:cells8020081. [PMID: 30678058 PMCID: PMC6406979 DOI: 10.3390/cells8020081] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
In recent years, it has become increasingly evident that cancer cells and the local microenvironment are crucial in the development and progression of tumors. One of the major components of the tumor microenvironment is the extracellular matrix (ECM), which comprises a complex mixture of components, including proteins, glycoproteins, proteoglycans, and polysaccharides. In addition to providing structural and biochemical support to tumor tissue, the ECM undergoes remodeling that alters the biochemical and mechanical properties of the tumor microenvironment and contributes to tumor progression and resistance to therapy. A novel concept has emerged, in which tumor-driven ECM remodeling affects the release of ECM components into peripheral blood, the levels of which are potential diagnostic or prognostic markers for tumors. This review discusses the most recent evidence on ECM remodeling-derived signals that are detectable in the bloodstream, as new early diagnostic and risk prediction tools for the most frequent solid cancers.
Collapse
|
8
|
Oakley-Girvan I, Davis SW. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark 2018; 21:29-39. [PMID: 29060925 DOI: 10.3233/cbm-170177] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Detecting volatile organic compounds (VOCs) could provide a rapid, noninvasive, and inexpensive screening tool for detecting cancer. OBJECTIVE In this systematic review, we identified specific exhaled breath VOCs correlated with lung, colorectal, and breast cancer. METHODS We identified relevant studies published in 2015 and 2016 by searching Pubmed and Web of Science. The protocol for this systematic review was registered in PROSPERO and the PRISMA guidelines were used in reporting. VOCs and performance data were extracted. RESULTS Three hundred and thirty three records were identified and 43 papers were included in the review, of which 20 were review articles themselves. We identified 17 studies that listed the VOCs with at least a subset of statistics on detection cutoff levels, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), and gradient. CONCLUSIONS Breath analysis for cancer screening and early detection shows promise, because samples can be collected easily, safely, and frequently. While gas chromatography-mass spectrometry is considered the gold standard for identifying specific VOCs, breath analysis has moved into analyzing patterns of VOCs using a variety of different multiple sensor techniques, such as eNoses and nanomaterials. Further development of VOCs for early cancer detection requires clinical trials with standardized breath sampling methods.
Collapse
|
9
|
Liu C, Sun B, Xu B, Meng X, Li L, Cong Y, Liu J, Wang Q, Xuan L, Song Q, Wu S. A panel containing PD-1, IL-2Rα, IL-10, and CA15-3 as a biomarker to discriminate breast cancer from benign breast disease. Cancer Manag Res 2018; 10:1749-1761. [PMID: 29983594 PMCID: PMC6027692 DOI: 10.2147/cmar.s160452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction Programmed cell death protein 1 (PD-1), an immune checkpoint molecule, has recently been recognized as a predictive and prognostic biomarker in several malignant tumors, but its diagnostic value remains largely unknown. We aimed to investigate the differential diagnostic efficiency of PD-1 and other immune molecules and propose a panel of immune molecules combined with cancer antigen 15-3 (CA15-3) to distinguish breast cancer (BC) from benign breast disease (BBD). Patients and methods Ninety-one eligible BC patients and 31 BBD patients were enrolled. Pretreatment peripheral blood was collected and tested for mRNA expression of PD-1, cytotoxic T lymphocyte antigen 4, forkhead box P3, transforming growth factor beta, interleukin-10 (IL-10), IL-2 receptor alpha (IL-2Rα), and cluster of differentiation 28 by quantitative reverse transcription PCR. Results The diagnostic areas under curve (AUCs) of PD-1, IL-2Rα, and IL-10 for BC-BBD discrimination were 0.764, 0.758, and 0.743, respectively. The diagnostic efficiencies of these three parameters in distinguishing early-stage or advanced BC from BBD were consistent with a role in BC-BBD discrimination. A panel of PD-1 + IL-10 + IL-2Rα + CA15-3 showed the highest AUC (0.862), with a sensitivity of 0.933 and a specificity of 0.724, for BC-BBD discrimination. In addition, for early-stage BC discrimination, this panel also had the highest AUC (0.811), with a sensitivity of 0.933 and a specificity of 0.614, while for advanced BC discrimination, a panel of PD-1 + IL-10 + CA15-3 exhibited the highest AUC (0.896), with a sensitivity of 0.933 and a specificity of 0.783. Conclusion These data indicate that the panel containing PD-1, IL-2Rα, IL-10, and CA15-3 can effectively discriminate BC from BBD with a high efficiency. After further confirmation, it could be used to complement conventional imaging modalities, especially in discriminating early-stage BC from BBD.
Collapse
Affiliation(s)
- Chao Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China, .,Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| | - Bing Sun
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China,
| | - Xiangying Meng
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China,
| | - Yang Cong
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| | - Jiannan Liu
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| | - Qian Wang
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| | - Liang Xuan
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China,
| | - Shikai Wu
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China,
| |
Collapse
|
10
|
Giussani M, Landoni E, Merlino G, Turdo F, Veneroni S, Paolini B, Cappelletti V, Miceli R, Orlandi R, Triulzi T, Tagliabue E. Extracellular matrix proteins as diagnostic markers of breast carcinoma. J Cell Physiol 2018. [PMID: 29521413 DOI: 10.1002/jcp.26513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in amount and composition of extracellular matrix (ECM) are considered a hallmark of tumor development. We tested the hypothesis that abnormal production of ECM components leads to blood-released ECM molecules representing tumor circulating biomarkers. Candidate genes were selected through class comparison in two publicly available datasets and confirmed in paired normal and tumor associated fibroblasts from breast carcinoma (BC) specimens. Production and release of ECM molecules were evaluated in normal human dermal fibroblasts (NHDFs) treated with conditioned media from three BC cell lines. Plasma samples from healthy donors and from patients with malignant or benign breast disease were tested by ELISA for the presence of collagen 11a1 (COL11A1), collagen oligomeric matrix protein (COMP), and collagen 10a1 (COL10A1). Selected ECM molecules were investigated by IHC in malignant and benign specimens. In silico analysis of gene expression profiles identified 11 ECM genes significantly up-regulated in tumor versus normal tissue. Western blot analyses revealed increased levels of molecules encoded by three of these genes, COL11A1, COMP, and COL10A1, in cell lysates and supernatants of conditioned NHDFs. Class comparison and class prediction analyses of two independent series of human plasma samples identified the combination of COL11A1, COMP, and COL10A1 as potentially informative in discriminating BC patients from those with benign disease. The three molecules resulted expressed in the stroma of BC tissue samples. Our results indicate that circulating COL11A1, COMP, and COL10A1 may be useful in diagnostic assessment of suspicious breast nodules and ECM molecules could represent an avenue to biomarker identification.
Collapse
Affiliation(s)
- Marta Giussani
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Landoni
- Medical Statistics, Biometry and Bioinformatics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Merlino
- Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Turdo
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Veneroni
- Tissue Biobank, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio Paolini
- Anatomic Pathology A Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vera Cappelletti
- Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosalba Miceli
- Medical Statistics, Biometry and Bioinformatics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosaria Orlandi
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|