1
|
Haller SD, Essani K. Oncolytic Tanapoxvirus Variants Expressing mIL-2 and mCCL-2 Regress Human Pancreatic Cancer Xenografts in Nude Mice. Biomedicines 2024; 12:1834. [PMID: 39200298 PMCID: PMC11351728 DOI: 10.3390/biomedicines12081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death and presents the lowest 5-year survival rate of any form of cancer in the US. Only 20% of PDAC patients are suitable for surgical resection and adjuvant chemotherapy, which remains the only curative treatment. Chemotherapeutic and gene therapy treatments are associated with adverse effects and lack specificity/efficacy. In this study, we assess the oncolytic potential of immuno-oncolytic tanapoxvirus (TPV) recombinants expressing mouse monocyte chemoattractant protein (mMCP-1 or mCCL2) and mouse interleukin (mIL)-2 in human pancreatic BxPc-3 cells using immunocompromised and CD-3+ T-cell-reconstituted mice. Intratumoral treatment with TPV/∆66R/mCCL2 and TPV/∆66R/mIL-2 resulted in a regression in BxPc-3 xenograft volume compared to control in immunocompromised mice; mCCL-2 expressing TPV OV resulted in a significant difference from control at p < 0.05. Histological analysis of immunocompromised mice treated with TPV/∆66R/mCCL2 or TPV/∆66R/mIL-2 demonstrated multiple biomarkers indicative of increased severity of chronic, active inflammation compared to controls. In conclusion, TPV recombinants expressing mCCL2 and mIL-2 demonstrated a therapeutic effect via regression in BxPc-3 tumor xenografts. Considering the enhanced oncolytic potency of TPV recombinants demonstrated against PDAC in this study, further investigation as an alternative or combination treatment option for human PDAC may be warranted.
Collapse
Affiliation(s)
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA;
| |
Collapse
|
2
|
Barbato A, Piscopo F, Salati M, Pollastro C, Evangelista L, Ferrante L, Limongello D, Brillante S, Iuliano A, Reggiani-Bonetti L, Salatiello M, Iaccarino A, Pisapia P, Malapelle U, Troncone G, Indrieri A, Dominici M, Franco B, Carotenuto P. A MiR181/Sirtuin1 regulatory circuit modulates drug response in biliary cancers. Clin Exp Med 2024; 24:74. [PMID: 38598008 PMCID: PMC11006774 DOI: 10.1007/s10238-024-01332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Despite recent advances, biliary tract cancer (BTC) remains one of the most lethal tumor worldwide due to late diagnosis, limited therapeutic strategies and resistance to conventional therapies. In recent years, high-throughput technologies have enabled extensive genome, and transcriptome sequencing unveiling, among others, the regulatory potential of microRNAs (miRNAs). Compelling evidence shown that miRNA are attractive therapeutic targets and promising candidates as biomarkers for various therapy-resistant tumors. The analysis of miRNA profile successfully identified miR-181c and -181d as significantly downregulated in BTC patients. Low miR-181c and -181d expression levels were correlated with worse prognosis and poor treatment efficacy. In fact, progression-free survival analysis indicated poor survival rates in miR-181c and -181d low expressing patients. The expression profile of miR-181c and -181d in BTC cell lines revealed that both miRNAs were dysregulated. Functional in vitro experiments in BTC cell lines showed that overexpression of miR-181c and -181d affected cell viability and increased sensitivity to chemotherapy compared to controls. In addition, by using bioinformatic tools we showed that the miR-181c/d functional role is determined by binding to their target SIRT1 (Sirtuin 1). Moreover, BTC patients expressing high levels of miR-181 and low SIRT1 shown an improved survival and treatment response. An integrative network analysis demonstrated that, miR-181/SIRT1 circuit had a regulatory effect on several important metabolic tumor-related processes. Our study demonstrated that miR-181c and -181d act as tumor suppressor miRNA in BTC, suggesting the potential use as therapeutic strategy in resistant cancers and as predictive biomarker in the precision medicine of BTC.
Collapse
Affiliation(s)
- Anna Barbato
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiola Piscopo
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Carla Pollastro
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
| | - Lorenzo Evangelista
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Luigi Ferrante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Davide Limongello
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Brillante
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Antonella Iuliano
- Department of Mathematics, Computer Science and Economics (DIMIE), University of Basilicata, 85100, Potenza, Italy
| | - Luca Reggiani-Bonetti
- Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena, 41125, Modena, Italy
| | - Maria Salatiello
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, Universita' degli Studi di Napoli-AOU Federico II, 80131, Naples, Italy
| | - Alessia Indrieri
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- IRGB, Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125, Modena, Italy
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, 80078, Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
- Department of Translational Medical Science, Medical Genetics, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
3
|
Farrukh L, Akhtar MF, Waqar HH, Peredo-Wende R. Significant CA 19-9 elevation in IgG4-related autoimmune pancreatitis - A diagnostic dilemma. Am J Med Sci 2024; 367:67-71. [PMID: 37714269 DOI: 10.1016/j.amjms.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
IgG4-related disease (IgG4-RD) is a systemic fibroinflammatory disorder characterized by dense infiltration of IgG4-positive plasma cells in the affected tissue along with characteristic storiform fibrosis that can lead to the development of tumefactive lesions in any organ. CA19-9 is a marker for pancreato-biliary malignancy, however mild to moderate elevation of CA 19-9 can also be observed in IgG4-RD autoimmune pancreatitis (AIP) and sclerosing cholangitis (IgG4-SC). Therefore, it becomes difficult to differentiate between these entities. We describe the case of a 65-year-old male with history of IgG4-RD, presenting with jaundice and abdominal pain. He was found to have a pancreatic mass with significantly elevated IgG4 162 (2-96 mg/dL and CA19-9 levels 2830 (0-35 U/ml). Patient underwent ERCP and biopsy, which ruled out pancreatic cancer and cholangiocarcinoma. He was diagnosed with IgG4-RD autoimmune pancreatitis (AIP) and sclerosing cholangitis. Treatment with steroids and rituximab resulted in significant improvement in the bilirubin and a dramatic decrease in CA19-9 levels.
Collapse
Affiliation(s)
- Larabe Farrukh
- Department of Medicine, Albany Medical Center, Albany, NY, USA.
| | | | | | - Ruben Peredo-Wende
- Department of Rheumatology, Albany Stratton VA Medical Center, Albany, NY, USA
| |
Collapse
|
4
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
5
|
Wei L, Sun J, Wang X, Huang Y, Huang L, Han L, Zheng Y, Xu Y, Zhang N, Yang M. Noncoding RNAs: an emerging modulator of drug resistance in pancreatic cancer. Front Cell Dev Biol 2023; 11:1226639. [PMID: 37560164 PMCID: PMC10407809 DOI: 10.3389/fcell.2023.1226639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Pancreatic cancer is the eighth leading cause of cancer-related deaths worldwide. Chemotherapy including gemcitabine, 5-fluorouracil, adriamycin and cisplatin, immunotherapy with immune checkpoint inhibitors and targeted therapy have been demonstrated to significantly improve prognosis of pancreatic cancer patients with advanced diseases. However, most patients developed drug resistance to these therapeutic agents, which leading to shortened patient survival. The detailed molecular mechanisms contributing to pancreatic cancer drug resistance remain largely unclear. The growing evidences have shown that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are involved in pancreatic cancer pathogenesis and development of drug resistance. In the present review, we systematically summarized the new insight on of various miRNAs, lncRNAs and circRNAs on drug resistance of pancreatic cancer. These results demonstrated that targeting the tumor-specific ncRNA may provide novel options for pancreatic cancer treatments.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Carotenuto P, Gradilone SA, Franco B. Cilia and Cancer: From Molecular Genetics to Therapeutic Strategies. Genes (Basel) 2023; 14:1428. [PMID: 37510333 PMCID: PMC10379587 DOI: 10.3390/genes14071428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Cilia are microtubule-based organelles that project from the cell surface with motility or sensory functions. Primary cilia work as antennae to sense and transduce extracellular signals. Cilia critically control proliferation by mediating cell-extrinsic signals and by regulating cell cycle entry. Recent studies have shown that primary cilia and their associated proteins also function in autophagy and genome stability, which are important players in oncogenesis. Abnormal functions of primary cilia may contribute to oncogenesis. Indeed, defective cilia can either promote or suppress cancers, depending on the cancer-initiating mutation, and the presence or absence of primary cilia is associated with specific cancer types. Together, these findings suggest that primary cilia play important, but distinct roles in different cancer types, opening up a completely new avenue of research to understand the biology and treatment of cancers. In this review, we discuss the roles of primary cilia in promoting or inhibiting oncogenesis based on the known or predicted functions of cilia and cilia-associated proteins in several key processes and related clinical implications.
Collapse
Affiliation(s)
- Pietro Carotenuto
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Sergio A. Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brunella Franco
- Medical Genetics, Department of Translational Medical Science, University of Naples “Federico II”, 80131 Naples, Italy
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School of Advanced Studies, Genomic and Experimental medicine Program (Scuola Superiore Meridionale), 80138 Naples, Italy
| |
Collapse
|
7
|
Altan Z, Sahin Y. miR-203 suppresses pancreatic cancer cell proliferation and migration by modulating DUSP5 expression. Mol Cell Probes 2022; 66:101866. [PMID: 36183924 DOI: 10.1016/j.mcp.2022.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is an insidious cancer that is commonly diagnosed in advanced stages. Therefore, it is necessary to understand PC-related mechanisms in order to discover new and reliable diagnostic biomarkers. It is known that miRNAs play a crucial role in carcinogenesis by targeting mRNAs. In this study we aimed to explore interaction between downregulated miR-203 and its upregulated target DUSP5 in PC. METHODS Using bioinformatics approaches we identified the DUSP5 as a direct target gene of miR-203 and detected potential binding sites between miR-203 and DUSP5. Additionally, we evaluated subcellular location, expression level and prognostic value of DUSP5 in PC through using various bioinformatics tools. To investigate the relationship between miR-203 and DUSP5, we increased the expression levels of miR-203 by transfecting miR-203 mimics into the pancreatic cancer cell line, PANC-1. Finally, MTT, wound healing, and colony formation assays were performed to determine effect of overexpressed miR-203 on proliferation and migration of PANC-1 cells. RESULTS We found that expression level of DUSP5 in pancreas tissue was one of the lowest tissue expression among all normal human tissue types. In addition, DUSP5 expression was upregulated both PC tissues and cell line and associated with poor overall survival in PC. Overexpression of miR-203 significantly downregulated expression level of DUSP5 and remarkably suppressed proliferation, migration and colony formation ability of PANC-1 cells. CONCLUSIONS These findings suggest that miR-203 restrains proliferation and migration of PC cells by regulating oncogenic activity of DUSP5 in PC, thereby could be novel candidate biomarkers for PC diagnosis and treatment.
Collapse
Affiliation(s)
- Zekiye Altan
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| | - Yunus Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
8
|
Sharma N, Arora V. Strategies for drug targeting in pancreatic cancer. Pancreatology 2022; 22:937-950. [PMID: 36055937 DOI: 10.1016/j.pan.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is expected to replace lung cancer as the second greatest cause of cancer mortality by 2025. It has been a particularly the most lethal kind of cancer. OBJECTIVE Despite the new innovations, research, and improvements in drug design; there are many hurdles limiting their therapeutic applications such as intrinsic resistance to chemotherapeutics, inability to deliver a sufficient concentration of drug to the target site, lack of effectiveness of drug delivery systems. These are the major contributing factors to limit the treatment. So, the main objective is to overcome these types of problems by nanotechnology and ligand conjugation approach to achieve targeted drug delivery. METHOD Nanotechnology has emerged as a major approach to develop cancer treatment. Regardless of the severity, there are several issues that restrict the therapeutic impact, including inadequate transport across biological barriers, limited cellular absorption, degradation, and faster clearance. RESULT Targeted drug delivery may overcome these obstacles by binding a natural ligand to the surface of nanocarriers, which enhances the drug's capacity to release at the desired site and minimizes adverse effects. CONCLUSION This study will investigate the possible outcomes of targeted therapeutic agent delivery in the treatment of pancreatic cancer, as well as the limitations and future prospects.
Collapse
Affiliation(s)
- Navni Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, 140113, India.
| | - Vimal Arora
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, 140113, India
| |
Collapse
|
9
|
Lyu P, Hao Z, Zhang H, Li J. Identifying pancreatic cancer‑associated miRNAs using weighted gene co‑expression network analysis. Oncol Lett 2022; 24:297. [DOI: 10.3892/ol.2022.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Pengfei Lyu
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Zhengwen Hao
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Haoruo Zhang
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Jun Li
- Department of General Surgery, Shanxi Tumor Hospital, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
10
|
Ma T, Wu FH, Wu HX, Fa Q, Chen Y. Long Non-Coding RNA MCM3AP-AS1: A Crucial Role in Human Malignancies. Pathol Oncol Res 2022; 28:1610194. [PMID: 35783356 PMCID: PMC9243217 DOI: 10.3389/pore.2022.1610194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/31/2022] [Indexed: 12/09/2022]
Abstract
The incidence of cancer continues to grow and is one of the leading causes of death in the world. Long noncoding RNAs (LncRNAs) is a group of RNA transcripts greater than 200 nucleotides in length, and although it cannot encode proteins, it can regulate different biological functions by controlling gene expression, transcription factors, etc. LncRNA micro-chromosome maintenance protein 3-associated protein antisense RNA 1 (MCM3AP-AS1) is involved in RNA processing and cell cycle-related functions, and MCM3AP-AS1 is dysregulated in expression in various types of cancers. This biomarker is involved in many processes related to carcinogens, such as cell proliferation, apoptosis, cell cycle, and migration. In this review, we summarize the roles of MCM3AP-AS1 in different human cancers and its biological functions with a view to providing ideas for future research.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fa-Hong Wu
- Department of General Surgery Hepatic-Biliary-Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, China
| | - Hong-Xia Wu
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiong Fa
- Department of Nuclear Medicine, The 940th Hospital of the People’s Liberation Army Joint Service Support Force, Lanzhou, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yan Chen,
| |
Collapse
|
11
|
Wu J, Liu G, An K, Shi L. NPTX1 inhibits pancreatic cancer cell proliferation and migration and enhances chemotherapy sensitivity by targeting RBM10. Oncol Lett 2022; 23:154. [PMID: 35836482 PMCID: PMC9258595 DOI: 10.3892/ol.2022.13275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Pancreatic cancer (PC), one of the deadliest diseases worldwide, has exhibited an increasing incidence rate in recent years. The present study aimed to explore the biological mechanism of PC. Therefore, the expression levels of neuronal pentraxin 1 (NPTX1) and RNA-binding protein 10 (RBM10) were detected in PC cell lines using reverse transcription-quantitative PCR (RT-qPCR) and western blot analyses prior to or following NPTX1 and RBM10 overexpression. Additionally, the proliferative ability of PANC-1 and BxPC-3 cells treated with or without gemcitabine (GEM) and cisplatin (DDP) was evaluated using Cell Counting Kit-8 assay. Cell apoptosis and the expression levels of apoptosis-related proteins were determined by TUNEL assay and western blot analysis, respectively. Furthermore, wound healing and Transwell assays were performed to measure the migration and invasion abilities of PANC-1 and BxPC-3 cells. The interaction between RBM10 and NPTX1 mRNA was detected by RNA binding protein immunoprecipitation (RIP) assay. Additionally, cells were treated with actinomycin D to verify the regulatory effect of RBM10 on NPTX1 expression. This effect was further confirmed by RT-qPCR analysis. The results showed that NPTX1 was downregulated in PC cell lines. In addition, NPTX1 overexpression inhibited the proliferation and promoted apoptosis in PC cells. The results from the wound healing and Transwell assays revealed that the migration and invasion abilities of PANC-1 and BxPC-3 cells were reduced following NPTX1 overexpression. However, treatment of NPTX1-overexpressing cells with GEM or DDP attenuated PC cell viability. In addition, the results of the RIP assay revealed that RBM10 could bind with NPTX1. Furthermore, RBM10 overexpression could regulate NPTX1 expression, as evidenced by actinomycin D experiments. Overall, the results of the present study suggested that NPTX1 could inhibit PC and enhance the sensitivity of PC cells to chemotherapy. Additionally, NPTX1 was found to interact with RBM10, indicating that NPTX1 could inhibit PC via targeting RBM10.
Collapse
Affiliation(s)
- Jing Wu
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gaifang Liu
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Kang An
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Linping Shi
- Department of Digestion, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
12
|
Gong X, Liu Y, Zheng C, Tian P, Peng M, Pan Y, Li X. Establishment of a 4-miRNA Prognostic Model for Risk Stratification of Patients With Pancreatic Adenocarcinoma. Front Oncol 2022; 12:827259. [PMID: 35186758 PMCID: PMC8851918 DOI: 10.3389/fonc.2022.827259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinomas (PAADs) often remain undiagnosed until later stages, limiting treatment options and leading to poor survival. The lack of robust biomarkers complicates PAAD prognosis, and patient risk stratification remains a major challenge. To address this issue, we established a panel constructed by four miRNAs (miR-4444-2, miR-934, miR-1301 and miR-3655) based on The Cancer Genome Atlas (TCGA) and Human Cancer Metastasis Database (HCMDB) to predicted the prognosis of PAAD patients. Then, a risk prediction model of these four miRNAs was constructed by using Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) regression analysis. This model stratified TCGA PAAD cohort into the low-risk and high-risk groups based on the panel-based risk score, which was significantly associated with 1-, 2-, 3-year OS (AUC=0.836, AUC=0.844, AUC=0.952, respectively). The nomogram was then established with a robust performance signature for predicting prognosis compared to clinical characteristics of pancreatic cancer (PC) patients, including age, gender and clinical stage. Moreover, two GSE data were validated the expressions of 4 miRNAs with prognosis/survival outcome in PC. In the external clinical sample validation, the high-risk group with the upregulated expressions of miR-934/miR-4444-2 and downregulated expressions of miR-1301/miR-3655 were indicated a poor prognosis. Furthermore, the cell counting kit-8 (CCK-8) assay, clone formation, transwell and wound healing assay also confirmed the promoting effect of miR-934/miR-4444-2 and the inhibiting effect of miR-1301/miR-3655 in PC cell proliferation and migration. Taken together, we identified a new 4-miRNA risk stratification model could be used in predicting prognosis in PAAD.
Collapse
Affiliation(s)
- Xun Gong
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China.,College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chenglong Zheng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Peikai Tian
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Minjie Peng
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen Key Laboratory, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| |
Collapse
|
13
|
Jiang P, Li X. Regulatory Mechanism of lncRNAs in M1/M2 Macrophages Polarization in the Diseases of Different Etiology. Front Immunol 2022; 13:835932. [PMID: 35145526 PMCID: PMC8822266 DOI: 10.3389/fimmu.2022.835932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Precise expression and regulation of genes in the immune system is important for organisms to produce strong immunity towards pathogens and limit autoimmunity. In recent years, an increasing number of studies has shown that long noncoding RNAs (lncRNAs) are closely related to immune function and can participate in regulating immune responses by regulating immune cell differentiation, development, and function. As immune cells, the polarization response of macrophages (Mφs) plays an important role in immune function and inflammation. LncRNAs can regulate the phenotypic polarization of Mφs to M1 or M2 through various mechanisms; promote pro-inflammatory or anti-inflammatory effects; and participate in the pathogenesis of cancers, inflammatory diseases, infections, metabolic diseases, and autoimmune diseases. In addition, it is important to explore the regulatory mechanisms of lncRNAs on the dynamic transition between different Mφs phenotypes. Thus, the regulatory role of lncRNAs in the polarization of Mφs and their mechanism are discussed in this review.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
- Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaopeng Li,
| |
Collapse
|
14
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
15
|
Effects of lncRNA LINC01320 on Proliferation and Migration of Pancreatic Cancer Cells through Targeted Regulation of miR-324-3p. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2021:4125432. [PMID: 34976325 PMCID: PMC8718302 DOI: 10.1155/2021/4125432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Objective LINC01320 is a new oncogenic gene. Nevertheless, the effect of LINC01320 on pancreatic cancer (PC) is still unclear. This research aimed to seek the influence of LINC01320 on PC and its possible mechanism. Methods RT-qPCR is used to test the LINC01320 in tissues and cells. Cell viability, apoptosis, migration, and invasiveness are detected to explore the role of LINC01320 in PC, and target genes are predicted by bioinformatics methods. The mechanism of action was further explored by transfection of specific siRNA, miRNA mimetics, or miRNA inhibitors. In order to verify the effect of LINC01320 in vivo, we carried out tumor xenotransplantation. Results We conclude that LINC01320 is highly expressed in PC tissues and cell strains. LINC01320 high expression was bound up with a poor prognosis. LINC01320 gene knockout inhibited the growth, migration, and invasiveness of PC cells. In addition, LINC01320 is expressed by miR-324-3p, which is also supported by in vivo experiments. Conclusion LINC01320 is highly expressed in PC, and it can suppress the growth and migration of PC cells through targeted regulation of miR-324-3p, which is expected to become a latent target for clinical treatment.
Collapse
|
16
|
Xu J, Xu W, Yang X, Liu Z, Zhao Y, Sun Q. LncRNA MIR99AHG mediated by FOXA1 modulates NOTCH2/Notch signaling pathway to accelerate pancreatic cancer through sponging miR-3129-5p and recruiting ELAVL1. Cancer Cell Int 2021; 21:674. [PMID: 34911544 PMCID: PMC8675481 DOI: 10.1186/s12935-021-02189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/31/2021] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer (PCa) is a fatal malignancy with poor prognosis, high recurrence and mortality. Substantial reports have suggested long non-coding RNAs (lncRNAs) are implicated in development of numerous malignant tumors, and PCa is included. However, the correlation between novel lncRNA mir-99a-let-7c cluster host gene (MIR99AHG) and PCa remains elusive and needs to be deeply investigated. Methods In this study, we firstly used RT-qPCR to examine MIR99AHG expression. Functional assays were implemented for determination of the role of MIR99AHG in PCa cells. Mechanism experiments were designed and carried out for exploring the regulatory mechanism involving MIR99AHG. Results MIR99AHG was distinctly overexpressed in PCa cell lines. MIR99AHG deficiency abrogated PCa cell proliferation, migration and invasion. Moreover, MIR99AHG up-regulation was induced by transcription factor forkhead box A1 (FOXA1). Furthermore, MIR99AHG modulated notch receptor 2 (NOTCH2) expression and stimulated Notch signaling pathway through sequestering microRNA-3129-5p (miR-3129-5p) and recruiting ELAV like RNA binding protein 1 (ELAVL1). Conclusions Altogether, the exploration of FOXA1/MIR99AHG/miR-3129-5p/ELAVL1/NOTCH2 axis in the progression of PCa might provide a meaningful revelation for PCa diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02189-z.
Collapse
Affiliation(s)
- Jin Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Weixue Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xuan Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yiya Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Qinyun Sun
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|
17
|
Long K, Zeng Q, Dong W. The clinical significance of microRNA-409 in pancreatic carcinoma and associated tumor cellular functions. Bioengineered 2021; 12:4633-4642. [PMID: 34338153 PMCID: PMC8806886 DOI: 10.1080/21655979.2021.1956404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
In recent years, the increasing incidence of pancreatic carcinoma (PC) patients has become one of the hot issues in the world. microRNAs (miRNAs) can act as oncogenes or tumor suppressor genes and have unpredictable effects on tumors, thus affecting the prognosis and survival of cancer patients. In this paper, we mainly studied the role of microRNA (miR)-409 in PC. The expression levels of miR-409 were analyzed by qRT-PCR. Kaplan-Meier curve and Cox regression were used to analyze the relationship between miR-409 and patient prognosis. The effects of miR-409 on the abilities of proliferation, migration and invasion were detected by CCK-8 and Transwell. The expression levels of miR-409 were down-regulated in PC, compared with normal controls. The prognosis of patients with low miR-409 expression is significantly poor in comparison with those with high expression. The down-regulation of miR-409 was conducive to the proliferation, migration and invasion of PC cells. miR-409 is a tumor suppressor of PC, the clinical significance of miR-409 in pancreatic cancer and related tumor cell function was clarified.
Collapse
Affiliation(s)
- Kui Long
- Department of Three Wards of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qingbin Zeng
- Department of Three Wards of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenzhi Dong
- Department of Three Wards of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
18
|
Jiang P, Yin Y, Wu Y, Sun Z. Silencing of long non-coding RNA SNHG15 suppresses proliferation, migration and invasion of pancreatic cancer cells by regulating the microRNA-345-5p/RAB27B axis. Exp Ther Med 2021; 22:1273. [PMID: 34594410 DOI: 10.3892/etm.2021.10708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is the seventh most common cause of cancer-associated mortality worldwide. The current study aimed to investigate the function and molecular mechanism underlying long non-coding (lnc)RNA SNHG15 in PC tissues and cells. Relative expression levels of lncRNA SNHG15, miR-345-5p and RAB27B in PC cells and tissues were examined by performing reverse transcription-quantitative PCR. The association between SNHG15, miR-345-5p and RAB27B was validated using a Dual-luciferase reporter assay. Proliferation, invasion and migration of PC cells were analysed by conducting MTT, wound healing and Transwell assays. Western blotting was performed to detect the relative expression of the RAB27B protein. The relative expression level of lncRNA SNHG15 and RAB27B was elevated, but that of miR-345-5p was decreased in PC. Silencing of SNHG15 suppressed the proliferation, invasion and migration of PC cells in vitro and suppressed tumour growth in xenograft mice in vivo. miR-345-5p was the target gene of SNHG15 and suppressed cell proliferation, migration and invasion in PC. Furthermore, miR-345-5p targeted RAB27B. The use of miR-345-5p inhibitor or overexpression of RAB27B reversed the suppressive effect of the small interfering RNA si-SNHG15-1 exerted on the proliferation, invasion and migration of PC cells. Silencing of SNHG15 inhibited the proliferation, invasion and migration of PC cells by mediating the miR-345-5p/RAB27B axis, thereby implying its potential as a prognostic marker and target for PC therapy.
Collapse
Affiliation(s)
- Pengfei Jiang
- Department of Gastroenterology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Youmin Yin
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yan Wu
- Health Management Center, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Zhaoli Sun
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
19
|
Seyed Hosseini E, Nikkhah A, Sotudeh A, Alizadeh Zarei M, Izadpanah F, Nikzad H, Haddad Kashani H. The impact of LncRNA dysregulation on clinicopathology and survival of pancreatic cancer: a systematic review and meta-analysis (PRISMA compliant). Cancer Cell Int 2021; 21:447. [PMID: 34425840 PMCID: PMC8383355 DOI: 10.1186/s12935-021-02125-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose An increasing number of studies have reported a significant association between long non-coding RNAs (lncRNAs) dysregulation and pancreatic cancers. In the present study, we aimed to gather articles to evaluate the prognostic value of long non coding RNA in pancreatic cancer. Experimental design We systematically searched all eligible articles from databases of PubMed, Web of Science, and Scopus to meta-analysis of published articles and screen association of multiple lncRNAs expression with clinicopathology and/or survival of pancreatic cancer. The pooled hazard ratios (HRs) and their 95% confidence intervals (95% CIs) were used to analysis of overall survival, disease-free survival and progression-free survival were measured with a fixed or random effects model. Results A total of 39 articles were included in the present meta-analysis. Our results showed that dysregulation of lncRNAs were linked to overall survival (39 studies, 4736 patients HR = 0.41, 95% CI 0.25 ± 0.58, random-effects in pancreatic cancer. Moreover, altered lncRNAs were also contributed to progression-free survival (8 studies, 1180 patients HR: 1.88, 95% CI (1.35–2.62) and disease-free survival (2 studies, 285 patients, HR: 6.07, 95% CI 1.28–28.78). In addition, our findings revealed the association between dysregulated RNAs and clinicopathological features in this type of cancer. Conclusions In conclusion, dysregulated lncRNAs could be served as promising biomarkers for diagnosis and prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Elahe Seyed Hosseini
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Nikkhah
- Student Research Committee, Kashan University of Medical Science, Kashan, Iran
| | - Amir Sotudeh
- Student Research Committee, Kashan University of Medical Science, Kashan, Iran
| | - Marziyeh Alizadeh Zarei
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran.,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Gametogenesis Research Center, Kashan University of Medical Science, Kashan, Iran. .,Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Wang L, Zhang M, Zhu H, Sun L, Yu B, Cui X. Combined identification of lncRNA NONHSAG004550 and NONHSAT125420 as a potential diagnostic biomarker of perinatal depression. J Clin Lab Anal 2021; 35:e23890. [PMID: 34263944 PMCID: PMC8373316 DOI: 10.1002/jcla.23890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background Perinatal depression (PD) is one of the most common complications of pregnancy, and timely diagnosis and treatment are still challenging in China due to the scarcity of psychiatrists. This study aimed to investigate whether long noncoding RNAs (lncRNAs) are potential diagnostic biomarkers of PD. Methods Using RT‐PCR, six downregulated major depressive disorder (MDD)‐associated lncRNAs (NONSUSG010267, NONHSAT140386, NONHSAG004550, NONHSAT125420, NONHSAG013606, and NONMMUG014361) were assessed in 39 pregnant women with PD (PD group), 20 PD patients undergoing mindfulness‐integrated cognitive behavior therapy (MiCBT) (treatment group (TG)), and 51 normal pregnant women (normal control (NC) group) to identify significantly differentially expressed lncRNAs during the second trimester and at 42 days postpartum. Results Compared with the NC group, the six lncRNAs were significantly downregulated in the PD group during the second trimester and at 42 days postpartum (p<0.01~0.001). Expression of NONHSAG004550 and NONHSAT125420 was significantly upregulated after MiCBT therapy in TG (p<0.01~0.001), and no significant differences were observed between TG and the NC group at 42 days postpartum (p>0.05). NONHSAG004550 and NONHSAT125420 were significantly differentially expressed in the PD group, and this expression was altered according to the amelioration of depressive symptoms. Receiver operating characteristic (ROC) curve analysis revealed that the two lncRNAs combined had a good value in predicting PD, with an area under the curve (AUC) of 0.764 (95% confidence interval (CI): 0.639–0.888). Conclusion The combination of lncRNAs NONHSAG004550 and NONHSAT125420 is a novel potential diagnostic biomarker of PD.
Collapse
Affiliation(s)
- Li Wang
- Department of Healthcare, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, China
| | - Ming Zhang
- Department of Clinical Laboratory, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, China
| | - Haiyan Zhu
- Department of Healthcare, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, China
| | - Liying Sun
- Department of Healthcare, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, China
| | - Bin Yu
- Department of Genetic Laboratory, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, China
| | - Xuelian Cui
- Department of Healthcare, Changzhou Maternity and Child Health Care Hospital Affiliated with Nanjing Medical University, Changzhou, China
| |
Collapse
|
21
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
22
|
Bhat IA, Kabeer SW, Reza MI, Mir RH, Dar MO. AdipoRon: A Novel Insulin Sensitizer in Various Complications and the Underlying Mechanisms: A Review. Curr Mol Pharmacol 2021; 13:94-107. [PMID: 31642417 DOI: 10.2174/1874467212666191022102800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AdipoRon is the first synthetic analog of endogenous adiponectin, an adipose tissue-derived hormone. AdipoRon possesses pharmacological properties similar to adiponectin and its ability to bind and activate the adipoR1 and adipoR2 receptors makes it a suitable candidate for the treatment of a multitude of disorders. OBJECTIVE In the present review, an attempt was made to compile and discuss the efficacy of adipoRon against various disorders. RESULTS AdipoRon is a drug that acts not only in metabolic diseases but in other conditions unrelated to energy metabolism. It is well- reported that adipoRon exhibits strong anti-obesity, anti-diabetic, anticancer, anti-depressant, anti-ischemic, anti-hypertrophic properties and also improves conditions like post-traumatic stress disorder, anxiety, and systemic sclerosis. CONCLUSION A lot is known about its effects in experimental systems, but the translation of this knowledge to the clinic requires studies which, for many of the potential target conditions, have yet to be carried out. The beneficial effects of AdipoRon in novel clinical conditions will suggest an underlying pathophysiological role of adiponectin and its receptors in previously unsuspected settings.
Collapse
Affiliation(s)
- Ishfaq Ahmad Bhat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Shaheen Wasil Kabeer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar (Mohali), Punjab-160062, India
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Muhammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| |
Collapse
|
23
|
Integrated Genomics Identifies miR-181/TFAM Pathway as a Critical Driver of Drug Resistance in Melanoma. Int J Mol Sci 2021; 22:ijms22041801. [PMID: 33670365 PMCID: PMC7918089 DOI: 10.3390/ijms22041801] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.
Collapse
|
24
|
Haller SD, Monaco ML, Essani K. The Present Status of Immuno-Oncolytic Viruses in the Treatment of Pancreatic Cancer. Viruses 2020; 12:v12111318. [PMID: 33213031 PMCID: PMC7698570 DOI: 10.3390/v12111318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death in Western countries. The incidence of PDAC has increased over the last 40 years and is projected to be the second leading cause of cancer death by 2030. Despite aggressive treatment regimens, prognosis for patients diagnosed with PDAC is very poor; PDAC has the lowest 5-year survival rate for any form of cancer in the United States (US). PDAC is very rarely detected in early stages when surgical resection can be performed. Only 20% of cases are suitable for surgical resection; this remains the only curative treatment when combined with adjuvant chemotherapy. Treatment regimens excluding surgical intervention such as chemotherapeutic treatments are associated with adverse effects and genetherapy strategies also struggle with lack of specificity and/or efficacy. The lack of effective treatments for this disease highlights the necessity for innovation in treatment options for patients diagnosed with early- to late-phase PDAC and immuno-oncolytic viruses (OVs) have been of particular interest since 2006 when the first oncolytic virus was approved as a therapy for nasopharyngeal cancers in China. Interest resurged in 2015 when T-Vec, an oncolytic herpes simplex virus, was approved in the United States for treatment of advanced melanoma. While many vectors have been explored, few show promise as treatment for pancreatic cancer, and fewer still have progressed to clinical trial evaluation. This review outlines recent strategies in the development of OVs targeting treatment of PDAC, current state of preclinical and clinical investigation and application.
Collapse
Affiliation(s)
| | | | - Karim Essani
- Correspondence: ; Tel.: +1-(269)-387-2661; Fax: +1-(269)-387-5609
| |
Collapse
|
25
|
Du T, Shi Y, Xu S, Wan X, Sun H, Liu B. Long Non-Coding RNAs in Drug Resistance of Breast Cancer. Onco Targets Ther 2020; 13:7075-7087. [PMID: 32764993 PMCID: PMC7382578 DOI: 10.2147/ott.s255226] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most common cancer and the leading cause of death in women. Advances in early diagnosis and therapeutic strategies have decreased the mortality of BC and improved the prognosis of patients to some extent. However, the development of drug resistance has limited the success rate of systemic therapies. Long non-coding RNAs (lncRNAs) are involved in drug resistance in BC via various mechanisms, which contribute to a complex regulatory network. In this review, we summarize the latest findings on the mechanisms underlying drug resistance modulated by lncRNAs in BC. In addition, we discuss the potential clinical applications of lncRNAs as targeted molecular therapy against drug resistance in BC.
Collapse
Affiliation(s)
- Tonghua Du
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Ying Shi
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shengnan Xu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiaoyu Wan
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Haiyin Sun
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bin Liu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
26
|
Shang LM, Liao XW, Zhu GZ, Huang KT, Han CY, Yang CK, Wang XK, Zhou X, Su H, Ye XP, Peng T. Genome-wide RNA-sequencing dataset reveals the prognostic value and potential molecular mechanisms of lncRNA in non-homologous end joining pathway 1 in early stage Pancreatic Ductal Adenocarcinoma. J Cancer 2020; 11:5556-5567. [PMID: 32913451 PMCID: PMC7477440 DOI: 10.7150/jca.39888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Our current study is to explore the prognostic value and molecular mechanisms underlying the role of lncRNA in non-homologous end joining pathway 1 (LINP1) in early stage pancreatic ductal adenocarcinoma (PDAC). Methods: Genome-wide RNA-seq datasets of 112 early stage PDAC patients were got from The Cancer Genome Atlas and analyzed using multiple online tools. Results: Overall survival in high LINP1 expression patients was shorter than those with low expression (high-LINP1 vs. low-LINP1=481 vs. 592 days, log-rank P=0.0432). The multivariate Cox proportional hazard regression model suggested that high-LINP1 patients had a markedly higher risk of death than low-LINP1 patients (adjusted P=0.004, hazard ratio=2.214, 95% confidence interval=1.283-3.820). Analysis of genome-wide co-expressed genes, screening of differentially expressed genes, and gene set enrichment analysis indicated that LINP1 may be involved in the regulation of cell proliferation-, cell adhesion- and cell cycle-related biological processes in PDAC. Six small-molecule compounds including STOCK1N-35874, fenofibrate, exisulind, NU-1025, vinburnine, and doxylamine were identified as potential LINP1-targeted drugs for the treatment of PDAC. Conclusions: Our study indicated that LINP1 may serve as a prognostic biomarker of early stage PDAC. Analysis of genome-wide datasets led to the elucidation of the underlying mechanisms and identified six potential targeted drugs for the treatment of early PDAC.
Collapse
Affiliation(s)
- Li-Ming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke-Tuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin-Ping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
27
|
Wang Y, Liu Z, Liu Q, Han Y, Zang Y, Zhang H, Du X, Qin T, Wu Y. Honokiol Suppressed Pancreatic Cancer Progression via miR-101/Mcl-1 Axis. Cancer Manag Res 2020; 12:5243-5254. [PMID: 32669873 PMCID: PMC7335890 DOI: 10.2147/cmar.s237323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Pancreatic cancer is one of the most aggressive malignancies. The present study aimed to examine the anti-tumor effects of honokiol in pancreatic cancer and to explore the underlying molecular mechanisms. Materials and Methods In vitro functional assays determined pancreatic cancer cell proliferation, apoptosis and invasion. Xenograft nude mice model determined the in vivo anti-cancer effects of honokiol. Luciferase reporter assay determined the interaction between miR101 and myeloid cell leukemia-1 (Mcl-1). Results Honokiol concentration-dependently suppressed pancreatic cancer cell viability. In addition, honokiol increased the caspase-3 activity and cell apoptotic rates, induced cell cycle arrest at G0/G1 phase, and inhibited cell invasion in pancreatic cancer. Interestingly, honokiol treatment induced up-regulation of miR-101 in pancreatic cancer cells. Knockdown of miR-101 attenuated the honokiol-induced cell apoptosis and inhibition in cell invasion of pancreatic cancer cells. On the other hand, miR-101 overexpression induced cell apoptosis and inhibited cell viability and invasion in pancreatic cancer. Further mechanistic study verified that Mcl-1 was negatively regulated by miR-101, and Mcl-1 overexpression counteracted the tumor-suppressive effects of honokiol on the pancreatic cancer cells. In vivo studies showed that honokiol dose-dependently suppressed tumor growth of pancreatic cancer in the nude mice and up-regulated miR-101 expression but down-regulated Mcl-1 expression in tumor tissues. Conclusion Our data showed that honokiol suppressed pancreatic cancer progression via miR-101-Mcl-1 axis. Honokiol could be a promising candidate for cancer prevention and/or therapeutic treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Yishuo Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Zhongyong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Qinrong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Yongguang Han
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Yuncai Zang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Huichao Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Xuzhao Du
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| | - Tao Qin
- Department of Rheumatology, Xinmi Hospital of Traditional Chinese Medicine, Xinmi, People's Republic of China
| | - Yuquan Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Henan Integrated Engineering Technology Research Center of Traditional Chinese Medicine Production, Zhengzhou, People's Republic of China
| |
Collapse
|
28
|
Indrieri A, Carrella S, Carotenuto P, Banfi S, Franco B. The Pervasive Role of the miR-181 Family in Development, Neurodegeneration, and Cancer. Int J Mol Sci 2020; 21:ijms21062092. [PMID: 32197476 PMCID: PMC7139714 DOI: 10.3390/ijms21062092] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs playing a fundamental role in the regulation of gene expression. Evidence accumulating in the past decades indicate that they are capable of simultaneously modulating diverse signaling pathways involved in a variety of pathophysiological processes. In the present review, we provide a comprehensive overview of the function of a highly conserved group of miRNAs, the miR-181 family, both in physiological as well as in pathological conditions. We summarize a large body of studies highlighting a role for this miRNA family in the regulation of key biological processes such as embryonic development, cell proliferation, apoptosis, autophagy, mitochondrial function, and immune response. Importantly, members of this family have been involved in many pathological processes underlying the most common neurodegenerative disorders as well as different solid tumors and hematological malignancies. The relevance of this miRNA family in the pathogenesis of these disorders and their possible influence on the severity of their manifestations will be discussed. A better understanding of the miR-181 family in pathological conditions may open new therapeutic avenues for devasting disorders such as neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), 20090 Milan, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Pietro Carotenuto
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- The Institute of Cancer Research, Cancer Therapeutics Unit 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy; (S.C.); (P.C.)
- Medical Genetics, Department of Translational Medical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (A.I.); (S.B.); (B.F.); Tel.: +39-081-19230655 (A.I.); +39-081-19230606 (S.B.); +39-081-19230615 (B.F.)
| |
Collapse
|
29
|
Meng X, Ma J, Wang B, Wu X, Liu Z. Long non-coding RNA OIP5-AS1 promotes pancreatic cancer cell growth through sponging miR-342-3p via AKT/ERK signaling pathway. J Physiol Biochem 2020; 76:301-315. [DOI: 10.1007/s13105-020-00734-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
|
30
|
Wang YP, Huang Y, Hou T, Lu M. LncRNA XIST acts as a ceRNA sponging miR-185-5p to modulate pancreatic cancer cell proliferation via targeting CCND2. Transl Cancer Res 2020; 9:1427-1438. [PMID: 35117490 PMCID: PMC8798058 DOI: 10.21037/tcr.2020.01.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/13/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been proved to be involved in the occurrence and progression of various tumors including pancreatic cancer (PC). Growing evidence shows that lncRNA X inactive-specific transcript (XIST) functions as an oncogene in multiple tumorigenesis. However, the underlying mechanism of lncRNA XIST in the progression of PC remains elusive. METHODS Expression levels of XIST and miR-185-5p both in PC tissues or PC cells were determined using real-time quantitative PCR (qRT-PCR). Gain and loss-of-function of XIST or miR-185-5p was performed for further exploration. Moreover, colony formation assay was performed to assess cell proliferation. Flow cytometry analysis was performed to measure cell cycle and apoptosis. Dual-luciferase reporter assay was conducted to verify the correlation between XIST, miR-185-5p and CCND2, respectively. Additionally, western blot analysis was conducted to determine the expression pattern of apoptosis-related proteins and cell cycle-associated proteins. RESULTS Herein, we found that XIST expression was up-regulated while miR-185-5p was down-regulated both in PC tissues and cell lines, compared with that of controls. Moreover, there was a negative correlation between XIST and miR-185-5p. Following that, functional experiments displayed that knockdown of XIST or overexpression of miR-185-5p inhibited cell proliferation, induced cell cycle arrest and promoted apoptosis in PC cells. Furthermore, mechanistic experiments displayed that XIST could negatively regulate miR-185-5p via direct binding. In addition, CCND2 was shown to be a downstream target of miR-185-5p. Importantly, overexpression or knockdown of XIST significantly increased or decreased the expression of CCND2, while these effects were reversed by miR-185-5p. CONCLUSIONS Taken together, our study demonstrated that lncRNA XIST functions as an oncogene and exerts its regulation via miR-185-5p/CCND2 axis, promoting proliferation and inhibiting apoptosis in PC.
Collapse
Affiliation(s)
| | | | - Tao Hou
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Min Lu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
31
|
Zhou W, Chen L, Li C, Huang R, Guo M, Ning S, Ji J, Guo X, Lou G, Jia X, Zhao J, Luo F, Li C, Qu Z, Yu S, Tai S. The multifaceted roles of long noncoding RNAs in pancreatic cancer: an update on what we know. Cancer Cell Int 2020; 20:41. [PMID: 32042268 PMCID: PMC7003405 DOI: 10.1186/s12935-020-1126-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related deaths worldwide. Due to the shortage of effective biomarkers for predicting survival and diagnosing PC, the underlying mechanism is still intensively investigated but poorly understood. Long noncoding RNAs (lncRNAs) provide biological functional diversity and complexity in protein regulatory networks. Scientific studies have revealed the emerging functions and regulatory roles of lncRNAs in PC behaviors. It is worth noting that some in-depth studies have revealed that lncRNAs are significantly associated with the initiation and progression of PC. As lncRNAs have good properties for both diagnostic and prognostic prediction due to their translation potential, we herein address the current understanding of the multifaceted roles of lncRNAs as regulators in the molecular mechanism of PC. We also discuss the possibility of using lncRNAs as survival biomarkers and their contributions to the development of targeted therapies based on the literature. The present review, based on what we know about current research findings, may help us better understand the roles of lncRNAs in PC.
Collapse
Affiliation(s)
- Wenjia Zhou
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Lu Chen
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Chao Li
- 3Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Huang
- 4Department of Colorectal Surgery, The second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- 5Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- 6College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingjing Ji
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Xiaorong Guo
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Ge Lou
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Xinqi Jia
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Junjie Zhao
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Feng Luo
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Chunlong Li
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Zhaowei Qu
- 7Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Yu
- 2Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| | - Sheng Tai
- 1Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Avenue, Harbin, 150086 People's Republic of China
| |
Collapse
|
32
|
Chen T, Lei S, Zeng Z, Zhang J, Xue Y, Sun Y, Lan J, Xu S, Mao D, Guo B. Linc00261 inhibits metastasis and the WNT signaling pathway of pancreatic cancer by regulating a miR‑552‑5p/FOXO3 axis. Oncol Rep 2020; 43:930-942. [PMID: 32020223 PMCID: PMC7041108 DOI: 10.3892/or.2020.7480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
The biological function of long non-coding RNA00261 (Linc00261) has been widely investigated in various types of cancer. The aim of the present study was to explore the role of Linc00261 in pancreatic cancer (PC). The expression of Linc00261 in patients with PC and PC cell lines was assessed using reverse transcription-quantitative PCR and the association of Linc00261 expression with survival was analyzed in the online database, GEPIA. The effects of Linc00261 on PC cell metastasis in vitro and in vivo were determined using a wound healing assay, Transwell invasion assays and a nude mouse model of liver metastasis. The relationship between Linc00261, the miR-552-5p/forkhead box O3 (FOXO3) axis and the Wnt signaling pathway were determined using bioinformatics analysis, dual luciferase assay and western blotting. Linc00261 expression was significantly decreased in PC tissues and cell lines, and reduced expression was associated with less favorable outcomes in patients with PC. Linc00261 overexpression inhibited migration and invasion of PC cells in vitro, whereas knockdown of Linc00261 increased migration and invasion. Linc00261 overexpression also decreased metastasis of PC cells in vivo. Linc00261 was revealed to directly bind to microRNA (miR)-552-5p and to decrease the expression of miR-552-5p. In addition, Linc00261 overexpression increased the expression of FOXO3, a target gene of miR-552-5p, as well as inhibited the Wnt signaling pathway. Overexpression of miR-552-5p in Linc00261-overexpressing PC cells increased migration and invasion, as well as decreased the expression of FOXO3 and members of the Wnt signaling pathway. Collectively, the present study demonstrated that Linc00261 inhibited metastasis and the Wnt signaling pathway of PC by regulating the miR-552-5p/FOXO3 axis. Linc00261 may suppress the development of PC, and serve as a potential biomarker and effective target for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Tengxiang Chen
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Jinjuan Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yan Xue
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yuanmei Sun
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Jinzhi Lan
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Su Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Dahua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medical Science, Guiyang, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
33
|
Zhao Y, Wang Z, Zhang W, Zhang L. Non-coding RNAs regulate autophagy process via influencing the expression of associated protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:32-39. [PMID: 31786247 DOI: 10.1016/j.pbiomolbio.2019.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a tightly-regulated multi-step process involving the lysosomal degradation of proteins and cytoplasmic organelles. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is fuse with lysosomes or endosomes, and then deliver its cytoplasmic cargo to the lysosomes. Here, we summarize the recent process of autophagy, focusing on protein molecules, their complexes, and its essential roles of autophagy in various phases. Emerging evidence has revealed that miRNAs, lncRNAs, and circRNAs play an indispensable role in autophagy regulation by modulating targeting gene expression. This review we will summarize the main features of ncRNAs and point to gaps in our current knowledge of the connection between ncRNAs and autophagy, as well as their potential utilization in various disease phenotypes. Also, we highlight recent advances in ncRNAs and autophagy-associated protein interaction and how they regulate the autophagy process.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China.
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
34
|
Jiang Y, Liu G, Ye W, Xie J, Shao C, Wang X, Li X. ZEB2-AS1 Accelerates Epithelial/Mesenchymal Transition Through miR-1205/CRKL Pathway in Colorectal Cancer. Cancer Biother Radiopharm 2019; 35:153-162. [PMID: 31755734 DOI: 10.1089/cbr.2019.3000] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Accumulating reports have demonstrated that long-noncoding RNAs (lncRNAs) play critical roles in the pathological progression of colorectal cancer (CRC). However, the role of lncRNA zinc finger E-box binding homeobox 2 antisense RNA 1 (ZEB2-AS1) in CRC remains largely unknown. Methods: The authors detected the ZEB2-AS1 expression in CRC tissue sample and CRC cell lines. The effects of ZEB2-AS1 on CRC were identified through in vitro assays (i.e., transwell assay, wound-healing assay, immunofluorescence assay, and Western blot) in a ZEB2-AS1 knockdown system. The molecular mechanism of ZEB2-AS1 was explored via bioinformatic tools, quantitative real-time polymerase chain reaction (qRT-PCR), dual-luciferase reporter assay, RNA immunoprecipitation assay, and so on. Moreover, a series of gain-of-function experiments were performed to identify the effect of ZEB2-AS1 and miR-1205 on epithelial-to-mesenchymal transition (EMT) in CRC cells. Results: This analysis clarified that ZEB2-AS1 was upregulated in both CRC tissue sample and cells lines; meanwhile, the high expression of ZEB2-AS1 was correlated with poor overall survival rate. ZEB2-AS1 knockdown significantly suppresses the EMT in CRC cells. Furthermore, the authors identified that the expression of ZEB2-AS1 was negatively correlated with expression of miR-1205, and CRKL could be a direct target of miR-1205. Through the gain-of-function experiments, they found that ZEB2-AS1 accelerates EMT in CRC cells via modulating the expression of miR-1205 and CRKL. Conclusion: Taken together, this study revealed that ZEB2-AS1 accelerates EMT in CRC through the miR-1205/CRKL pathway, suggesting that ZEB2-AS1 may potentially serve as a target of CRC.
Collapse
Affiliation(s)
- Yinghao Jiang
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Wei Ye
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Jianjin Xie
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Chunfa Shao
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Xiaowei Wang
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| | - Xia Li
- Department of Anorectal Surgery, The First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
35
|
Fattahi S, Kosari-Monfared M, Golpour M, Emami Z, Ghasemiyan M, Nouri M, Akhavan-Niaki H. LncRNAs as potential diagnostic and prognostic biomarkers in gastric cancer: A novel approach to personalized medicine. J Cell Physiol 2019; 235:3189-3206. [PMID: 31595495 DOI: 10.1002/jcp.29260] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the third leading cause of cancer death with 5-year survival rate of about 30-35%. Since early detection is associated with decreased mortality, identification of novel biomarkers for early diagnosis and proper management of patients with the best response to therapy is urgently needed. Long noncoding RNAs (lncRNAs) due to their high specificity, easy accessibility in a noninvasive manner, as well as their aberrant expression under different pathological and physiological conditions, have received a great attention as potential diagnostic, prognostic, or predictive biomarkers. They may also serve as targets for treating gastric cancer. In this review, we highlighted the role of lncRNAs as tumor suppressors or oncogenes that make them potential biomarkers for the diagnosis and prognosis of gastric cancer. Relatively, lncRNAs such as H19, HOTAIR, UCA1, PVT1, tissue differentiation-inducing nonprotein coding, and LINC00152 could be potential diagnostic and prognostic markers in patients with gastric cancer. Also, the impact of lncRNAs such as ecCEBPA, MLK7-AS1, TUG1, HOXA11-AS, GAPLINC, LEIGC, multidrug resistance-related and upregulated lncRNA, PVT1 on gastric cancer epigenetic and drug resistance as well as their potential as therapeutic targets for personalized medicine was discussed.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Department of Genetics, Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Genetics, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Biochemistry, North Research Center, Pasteur Institute, Amol, Iran
| | | | - Monireh Golpour
- Department of Immunology, Molecular and Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakieh Emami
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ghasemiyan
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Nouri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
36
|
Kobayashi T, Honda K. Trends in biomarker discoveries for the early detection and risk stratification of pancreatic cancer using omics studies. Expert Rev Mol Diagn 2019; 19:651-654. [PMID: 31298060 DOI: 10.1080/14737159.2019.1643718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine , Kobe , Hyogo , Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|
37
|
Moschovis D, Vasilaki E, Tzouvala M, Karamanolis G, Katifelis H, Legaki E, Vezakis A, Aravantinos G, Gazouli M. Association between genetic polymorphisms in long non-coding RNAs and pancreatic cancer risk. Cancer Biomark 2019; 24:117-123. [PMID: 30475759 DOI: 10.3233/cbm-181959] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are emerging as candidate biomarkers of cancer, having regulatory functions in both oncogenic and tumor-suppressive pathways. Concerning pancreatic cancer (PC), deregulation of lncRNAs involved in tumor initiation, invasion, and metastasis seem to play a key role. However, data is scarce about regulatory mechanism of lncRNA expression. OBJECTIVE The aim of our study was to investigate the contribution of two lncRNAs polymorphisms (rs1561927 and rs4759313 of PVT1 and HOTAIR, respectively) in PC susceptibility. METHODS A case-control study was conducted analysing rs1561927 and rs4759313 polymorphisms using DNA collected in a population-based case-control study of pancreatic cancer (111 pancreatic ductal adenocarcinoma cases (PDAC), 56 pancreatic neuroendocrine tumor (PNET), and 125 healthy controls). RESULTS Regarding the PVT1 rs1561927 polymorphism the G allele was significantly overrepresented in both PDAC and PNET patients compared to the controls, while the presence of the HOTAIR rs4759314 G allele was found to be overrepresented in the PNET patients only compared to the controls. The PVT1 rs1561927 AG/GG genotypes were associated with poor overall survival in PDAC patients. CONCLUSIONS Our results suggested that polymorphisms of these two lncRNA polymorphisms implicated in pancreatic carcinogenesis. Further large-scale and functional studies are needed to confirm our results.
Collapse
Affiliation(s)
- D Moschovis
- Department of Gastroenterology, General Hospital of Nikea and Piraeus "Agios Panteleimon", Nikea, Greece
| | - E Vasilaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Tzouvala
- Department of Gastroenterology, General Hospital of Nikea and Piraeus "Agios Panteleimon", Nikea, Greece
| | - G Karamanolis
- Academic Department of Gastroenterology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - H Katifelis
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - E Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - A Vezakis
- Second Department of Surgery, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G Aravantinos
- Second Department of Medical Oncology, Agii Anargiri Cancer Hospital, Athens, Greece
| | - M Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
38
|
Park CE, Park SH. Investigation of the Molecular Diagnostic Market in Animals. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.1.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chang-Eun Park
- Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University, Cheonan, Korea
| | - Sung-Ha Park
- IVD R&D Group, IVD Business Team, Health and Medical Equipment Division, Samsung Electronics Co., Ltd., Suwon, Korea
| |
Collapse
|
39
|
Garajová I, Balsano R, Tommasi C, Giovannetti E. Noncoding Rnas Emerging as Novel Biomarkers in Pancreatic Cancer. Curr Pharm Des 2019; 24:4601-4604. [PMID: 30659532 DOI: 10.2174/1381612825666190119125804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Noncoding RNAs play important regulatory roles in diverse biological processes and their misregulation
might lead to different diseases, including cancer. Previous studies have reported the evolving role of miRNAs
as new potential biomarkers in cancer diagnosis, prognosis, as well as predictive biomarkers of chemotherapy
response or therapeutic targets. In this review, we outline the involvement of noncoding RNA in pancreatic
cancer, providing an overview of known miRNAs in its diagnosis, prognosis and chemoresistance. In addition,
we discuss the influence of non-coding RNAs in the metastatic behavior of pancreatic cancer, as well as the role
of diet in epigenetic regulation of non-coding RNAs in cancer, which can, in turn, lead the development of new
prevention’s techniques or novel targets for cancer therapy.
Collapse
Affiliation(s)
- Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Chiara Tommasi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
40
|
Liang W, Fan T, Liu L, Zhang L. Knockdown of growth-arrest specific transcript 5 restores oxidized low-density lipoprotein-induced impaired autophagy flux via upregulating miR-26a in human endothelial cells. Eur J Pharmacol 2019; 843:154-161. [DOI: 10.1016/j.ejphar.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022]
|
41
|
Cong L, Zhao Y, Pogue AI, Lukiw WJ. Role of microRNA (miRNA) and Viroids in Lethal Diseases of Plants and Animals. Potential Contribution to Human Neurodegenerative Disorders. BIOCHEMISTRY (MOSCOW) 2018; 83:1018-1029. [PMID: 30472940 DOI: 10.1134/s0006297918090031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both plants and animals have adopted a common strategy of using ~18-25-nucleotide small non-coding RNAs (sncRNAs), known as microRNAs (miRNAs), to transmit DNA-based epigenetic information. miRNAs (i) shape the total transcriptional output of individual cells; (ii) regulate and fine-tune gene expression profiles of cell clusters, and (iii) modulate cell phenotype in response to environmental stimuli and stressors. These miRNAs, the smallest known carriers of gene-encoded post-transcriptional regulatory information, not only regulate cellular function in healthy cells but also act as important mediators in the development of plant and animal diseases. Plants possess their own specific miRNAs; at least 32 plant species have been found to carry infectious sncRNAs called viroids, whose mechanisms of generation and functions are strikingly similar to those of miRNAs. This review highlights recent remarkable and sometimes controversial findings in miRNA signaling in plants and animals. Special attention is given to the intriguing possibility that dietary miRNAs and/or sncRNAs can function as mobile epigenetic and/or evolutionary linkers between different species and contribute to both intra- and interkingdom signaling. Wherever possible, emphasis has been placed on the relevance of these miRNAs to the development of human neurodegenerative diseases, such as Alzheimer's disease. Based on the current available data, we suggest that such xeno-miRNAs may (i) contribute to the beneficial properties of medicinal plants, (ii) contribute to the negative properties of disease-causing or poisonous plants, and (iii) provide cross-species communication between kingdoms of living organisms involving multiple epigenetic and/or potentially pathogenic mechanisms associated with the onset and pathogenesis of various diseases.
Collapse
Affiliation(s)
- L Cong
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Neurology, Shengjing Hospital, China Medical University, Heping District, Shenyang, Liaoning Province, China
| | - Y Zhao
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA.,Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA
| | - A I Pogue
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
| | - W J Lukiw
- Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2272, USA. .,Department Neurology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA.,Department Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA 70112-2272, USA
| |
Collapse
|
42
|
Wu C, Yang L, Qi X, Wang T, Li M, Xu K. Inhibition of long non-coding RNA HOTAIR enhances radiosensitivity via regulating autophagy in pancreatic cancer. Cancer Manag Res 2018; 10:5261-5271. [PMID: 30464623 PMCID: PMC6223333 DOI: 10.2147/cmar.s174066] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Resistance to radiation therapy is still a challenge for treatment of pancreatic cancer(PC). Long non-coding RNAs (lncRNA) HOTAIR has been found to play a oncogenic role in several cancers. However, the correlation between HOTAIR and radiotherapy in PC is still unclear. Methods TCGA data was collected to analyze the expression of HOTAIR and its relationship with PC progression. A series of functional experiments were conducted to explore the role of HOTAIR in PC radiosensitivity and its underlying molecular mechanisms. Results By the analysis of the TCGA data, we found HOTAIR expression in PC tissues was significantly higher than normal tissues and associated with tumor progression. The function analysis showed HOTAIR was enriched in biological regulation and response to stimulus. And in vitro study, the expression of HOTAIR was increased in PANC-1 and AsPC-1 cells after radiation. We identified that HOTAIR knockdown could enhance radiosensitivity and influence autophagy by up-regulating ATG7 expression in PC cells. By futher rescue experiments using rapamycin, activation of autophagy could reversed the the inhibition of cell proliferation and colony formation, as well as promotion of apoptosis mediated by HOTAIR knockdown, indicating that HOTAIR knockdown promoted radiosensitivity of PC cells by regulating autophagy. Conclusion Our finding revealed the the regulatory role of HOTAIR in radiosensitivity and provided a a new sight to improve radiotherapy effciency in PC.
Collapse
Affiliation(s)
- Chunli Wu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China, .,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China, .,Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Xun Qi
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China,
| | - Taifang Wang
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China, .,Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, The First Affiliated Hospital of China Medical University, Shenyang, China,
| |
Collapse
|
43
|
Samandari M, Julia MG, Rice A, Chronopoulos A, Del Rio Hernandez AE. Liquid biopsies for management of pancreatic cancer. Transl Res 2018; 201:98-127. [PMID: 30118658 DOI: 10.1016/j.trsl.2018.07.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/17/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is one of the main causes of cancer-related deaths worldwide. It is asymptomatic at an early stage, and most diagnosis occurs when the disease is already at a late stage, by which time the tumor is nonresectable. In order to increase the overall survival of patients with pancreatic cancer, as well as to decrease the cancer burden, it is necessary to perform early diagnosis, prognosis stratifications and cancer monitoring using accurate, minimally invasive, and cost-effective methods. Liquid biopsies seek to detect tumor-associated biomarkers in a variety of extractable body fluids and can help to monitor treatment response and disease progression, and even predict patient outcome. In patients with pancreatic cancer, tumor-derived materials, primarily circulating tumor DNA, circulating tumor cells and exosomes, are being studied for inclusion in the management of the disease. This review focuses on describing the biology of these biomarkers, methods for their enrichment and detection, as well as their potential for clinical application. Moreover, we discuss the future direction of liquid biopsies and introduce how they can be exploited toward point of care personalized medicine for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Mohamadmahdi Samandari
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - María Gil Julia
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Armando E Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
44
|
Adamopoulos PG, Raptis GD, Kontos CK, Scorilas A. Discovery and expression analysis of novel transcripts of the human SR-related CTD-associated factor 1 (SCAF1) gene in human cancer cells using Next-Generation Sequencing. Gene 2018; 670:155-165. [PMID: 29787824 DOI: 10.1016/j.gene.2018.05.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023]
Abstract
The human SR-related CTD associated factor 1 (SCAF1) gene is a new member of the human SR (Ser/Arg-rich) superfamily of pre-mRNA splicing factors, which has been discovered and cloned by members of our lab. SCAF1 interacts with the CTD domain of the RNA polymerase II polypeptide A and is firmly involved in pre-mRNA splicing. Although it was found to be expressed widely in multiple human tissues, its mRNA levels vary a lot. The significant relation of SCAF1 with cancer has been confirmed by many studies, since SCAF1 mRNA transcript was found to be overexpressed in breast and ovarian tumors, confirming its significant prognostic value as a cancer biomarker in both these human malignancies. In this study, we describe the discovery and cloning of fifteen novel transcripts of the human SCAF1 gene (SCAF1 v.2 - v.16), using nested PCR and NGS technology. In detail, extensive bioinformatic analysis revealed that these novel SCAF1 splice variants comprise a total of nine novel alternative splicing events between the annotated exons of the gene, thus producing seven novel SCAF1 transcripts with open-reading frames, which are predicted to encode novel SCAF1 isoforms and eight novel SCAF1 transcripts with premature termination codons that are likely long non-coding RNAs. Additionally, a novel 3' UTR was discovered and cloned using nested 3' RACE and was validated with Sanger sequencing. In order to validate the NGS findings as well as to investigate the expression profile of each novel transcript, RT-PCR experiments were carried out with the use of variant-specific primers. Since SCAF1 is implicated in many human malignancies, qualifying as a potential biomarker, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios D Raptis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
45
|
Sengupta D, Deb M, Patra SK. Antagonistic activities of miR-148a and DNMT1: Ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival. Gene 2018; 660:68-79. [PMID: 29596883 DOI: 10.1016/j.gene.2018.03.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/21/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
Abstract
Functional analyses of noncoding RNAs have associated many micro RNAs (miRNA, miR) with various physiological processes, including proliferation, differentiation, development, cell metabolism, and apoptosis. Aberrant expression of miRNA and imbalance in their functions may lead to cellular aberration and different disease development, including cancer. In silico analysis of miRNA target prediction suggested that miR-148a possess a binding site in the 3' UTR of DNMT1 mRNA which can cause silencing of DNMT1 gene. Accordingly, we performed in vitro cell culture experiments to confirm the effect miR-148a on DNMT1 gene expression in prostate cancer cell lines. We demonstrated that there is a physical association between DNMT1 mRNA and miR-148a. We found that (i) ectopic expression of miR-148a induces programmed cell death and represses cell proliferation by targeting DNMT1; (ii) miR-148a gene is regulated by DNA methylation and DNMT1 in prostate cancer. We conclude that miR-148a is silenced by DNA methylation and ectopic expression of miR-148a suppresses DNMT1 expression and induced apoptotic genes expression in hormone-refractory prostate cancer cells.
Collapse
Affiliation(s)
- Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
46
|
Lampis A, Carotenuto P, Vlachogiannis G, Cascione L, Hedayat S, Burke R, Clarke P, Bosma E, Simbolo M, Scarpa A, Yu S, Cole R, Smyth E, Mateos JF, Begum R, Hezelova B, Eltahir Z, Wotherspoon A, Fotiadis N, Bali MA, Nepal C, Khan K, Stubbs M, Hahne JC, Gasparini P, Guzzardo V, Croce CM, Eccles S, Fassan M, Cunningham D, Andersen JB, Workman P, Valeri N, Braconi C. MIR21 Drives Resistance to Heat Shock Protein 90 Inhibition in Cholangiocarcinoma. Gastroenterology 2018; 154:1066-1079.e5. [PMID: 29113809 PMCID: PMC5863695 DOI: 10.1053/j.gastro.2017.10.043] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Cholangiocarcinomas (CCA) are resistant to chemotherapy, so new therapeutic agents are needed. We performed a screen to identify small-molecule compounds that are active against CCAs. Levels of microRNA 21 (MIR21 or miRNA21) are increased in CCAs. We investigated whether miRNA21 mediates resistance of CCA cells and organoids to HSP90 inhibitors. METHODS We performed a high-throughput screen of 484 small-molecule compounds to identify those that reduced viability of 6 human CCA cell lines. We tested the effects of HSP90 inhibitors on cells with disruption of the MIR21 gene, cells incubated with MIR21 inhibitors, and stable cell lines with inducible expression of MIR21. We obtained CCA biopsies from patients, cultured them as organoids (patient-derived organoids). We assessed their architecture, mutation and gene expression patterns, response to compounds in culture, and when grown as subcutaneous xenograft tumors in mice. RESULTS Cells with IDH1 and PBRM1 mutations had the highest level of sensitivity to histone deacetylase inhibitors. HSP90 inhibitors were effective in all cell lines, irrespective of mutations. Sensitivity of cells to HSP90 inhibitors correlated inversely with baseline level of MIR21. Disruption of MIR21 increased cell sensitivity to HSP90 inhibitors. CCA cells that expressed transgenic MIR21 were more resistant to HSP90 inhibitors than cells transfected with control vectors; inactivation of MIR21 in these cells restored sensitivity to these agents. MIR21 was shown to target the DnaJ heat shock protein family (Hsp40) member B5 (DNAJB5). Transgenic expression of DNAJB5 in CCA cells that overexpressed MIR21 re-sensitized them to HSP90 inhibitors. Sensitivity of patient-derived organoids to HSP90 inhibitors, in culture and when grown as xenograft tumors in mice, depended on expression of miRNA21. CONCLUSIONS miRNA21 appears to mediate resistance of CCA cells to HSP90 inhibitors by reducing levels of DNAJB5. HSP90 inhibitors might be developed for the treatment of CCA and miRNA21 might be a marker of sensitivity to these agents.
Collapse
Affiliation(s)
| | | | | | - Luciano Cascione
- Bioinformatics Core Unit, Institute of Oncology Research, Bellinzona, Switzerland
| | | | | | - Paul Clarke
- The Institute of Cancer Research, London, UK
| | - Else Bosma
- The Institute of Cancer Research, London, UK
| | - Michele Simbolo
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Sijia Yu
- The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | | | | - Chirag Nepal
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Khurum Khan
- The Royal Marsden NHS Trust, London and Surrey, UK
| | - Mark Stubbs
- The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Matteo Fassan
- ARC-Net Research Centre and Department of Pathology and Diagnostics, University of Verona, Verona, Italy; Department of Medicine, University of Padua, Padua, Italy
| | | | - Jesper B Andersen
- Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicola Valeri
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Trust, London and Surrey, UK
| | - Chiara Braconi
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Trust, London and Surrey, UK.
| |
Collapse
|
47
|
Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn 2018; 18:133-145. [DOI: 10.1080/14737159.2018.1425143] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ivan A. Zaporozhchenko
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Laboratory of Biomedical Technologies, Centre of New Surgical Technologies, E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
| | - Anastasia A. Ponomaryova
- Laboratory of Immunology, Tomsk Cancer Research Institute of SB RAMS, Tomsk, Russia
- Department of Applied Physics, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena Yu Rykova
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Laboratory of Biomedical Technologies, Centre of New Surgical Technologies, E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
| | - Pavel P. Laktionov
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Laboratory of Biomedical Technologies, Centre of New Surgical Technologies, E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
| |
Collapse
|
48
|
Zhao Y, Cong L, Lukiw WJ. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication. Cell Mol Neurobiol 2018; 38:133-140. [PMID: 28879580 DOI: 10.1007/s10571-017-0547-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA
| | - Lin Cong
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Neurology, Shengjing Hospital, China Medical University, 36 No. 3 Street, Heping District, Shenyang, Liaoning, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA.
- Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
- Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
| |
Collapse
|
49
|
Dong D, Mu Z, Wang W, Xin N, Song X, Shao Y, Zhao C. Prognostic value of long noncoding RNA ZFAS1 in various carcinomas: a meta-analysis. Oncotarget 2017; 8:84497-84505. [PMID: 29137442 PMCID: PMC5663614 DOI: 10.18632/oncotarget.21100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022] Open
Abstract
A number of studies have revealed that zinc finger antisense 1 (ZFAS1), a long noncoding RNA (lncRNA), is aberrantly regulated in various cancers, and high ZFAS1 expression is associated with poor prognosis and increased risk of lymph node metastasis (LNM). This meta-analysis was conducted to identify the potential value of ZFAS1 as a biomarker for cancer prognosis. We searched electronic database PubMed, Web of Science, and China Wanfang Data (up to June 1, 2017) to collect all relevant studies and explore the association of ZFAS1 expression with overall survival (OS) and LNM. The results showed that cancer patients with high ZFAS1 expression had a worse OS than those with low ZFAS1 expression (HR: 1.94, 95% confidence interval [CI]: 1.41–2.47, P < 0.001), and high ZFAS1 expression was significantly associated with LNM (OR: 2.60, 95% CI: 1.54–4.42, P < 0.001). Subgroup analysis revealed that high ZFAS1 expression was significantly related to high incidence of LNM in subgroups of sample size more than 88 (OR: 3.16, 95% CI: 2.06–4.86, P < 0.001), non-digestive system malignancies (OR: 4.05, 95% CI: 2.49–6.60, P < 0.001), and studies reported in 2017 (OR: 4.86, 95% CI: 2.67–8.84, P < 0.001) without significant heterogeneity. Further meta-regression by the covariates showed that tumor type, sample size, quality score, cut off value and publication year did not result in the inter-study heterogeneity. In conclusion, the present meta-analysis demonstrates that high ZFAS1 expression may potentially serve as a reliable biomarker for poor clinical outcome in various cancers.
Collapse
Affiliation(s)
- Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Zhongyi Mu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.,Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, People's Republic of China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Na Xin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Xiaowen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Yue Shao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
50
|
Meta-analysis of the clinical value of abnormally expressed long non-coding RNAs for pancreatic cancer. Oncotarget 2017; 8:89149-89159. [PMID: 29179507 PMCID: PMC5687677 DOI: 10.18632/oncotarget.20803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal malignant neoplasms of the digestive system. Long non-coding RNAs (lncRNAs) are a novel type of non-protein coding transcripts that play an important role in pancreatic carcinogenesis. We herein aimed to meta-analyze the diagnostic and prognostic significance of lncRNA expression profiles in PC. A comprehensive retrieval of eligible studies was performed based on the online databases. Quantitative meta-analyses of the pooled diagnostic parameters and hazard ratios (HRs) were enabled by using standard statistical methods. A total of 16 studies comprising 1386 PC patients were included. The pooled effect sizes exhibited that lncRNA expression profile achieved a combined sensitivity of 0.82 (95% CI: 0.72-0.89), specificity of 0.77 (95% CI: 0.65-0.86) and AUC (area under curve) of 0.87 (95% CI: 0.83-0.89) in distinguishing patients with PC from noncancerous controls. Notably, abnormally expressed lncRNAs were markedly associated with unfavorable overall survival (OS) in PC (univariate analysis: HR = 1.52, 95% CI: 1.04-2.22, P = 0.031; multivariate analysis: HR = 1.55, 95% CI: 1.19-2.02, P = 0.001). Statistical significance was also observed in our stratified analyses grouped by clinicopathologic features. In conclusion, abnormal lncRNA expression profiles could be rated as promising biomarker(s) to enable diagnosis and predict the prognosis of PC.
Collapse
|