1
|
Wu J, Deng Y, Zhang X, Ma J, Zheng X, Chen Y. Suchilactone inhibits the growth of acute myeloid leukaemia by inactivating SHP2. PHARMACEUTICAL BIOLOGY 2022; 60:144-153. [PMID: 34962431 PMCID: PMC8725822 DOI: 10.1080/13880209.2021.2017467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/07/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Suchilactone, a lignan compound extracted from Monsonia angustifolia E.Mey. ex A.Rich. (Geraniaceae), has little research on pharmacological activity; whether suchilactone has inhibitory effect on acute myeloid leukaemia (AML) is unclear. OBJECTIVE To investigate the antitumor effect of suchilactone and its mechanism in AML. MATERIALS AND METHODS The effects of suchilactone on cell growth were detected by CCK-8 and flow cytometry. Network pharmacology was conducted to explore target of suchilactone. Gene expression was detected by western blot and RT-PCR. SHI-1 cells (1 × 106 cell per mouse) were subcutaneously inoculated into the female SCID mice. Suchilactone (15 and 30 mg/kg) was dissolved in PBS with 0.5% carboxymethylcellulose sodium and administered (i.g.) to mice once a day for 19 days, while the control group received PBS with 0.5% carboxymethylcellulose sodium. Tumour tissues were stained with Ki-67 and TUNEL. RESULTS Suchilactone exerted an effective inhibition on the growth of SHI-1 cells with IC50 of 17.01 μM. Then, we found that suchilactone binds to the SHP2 protein and inhibits its activation, and suchilactone interacted with SHP2 to inhibit cell proliferation and promote cell apoptosis via blocking the activation of SHP2. Moreover, Suchilaction inhibited tumour growth of AML xenografts in mice, as the tumour weight decreased from 0.618 g (control) to 0.35 g (15 mg/kg) and 0.258 g (30 mg/kg). Suchilactone inhibited Ki-67 expression and increased TUNEL expression in tumour tissue. DISCUSSION AND CONCLUSIONS Our study is the first to demonstrate suchilactone inhibits AML growth, suggesting that suchilactone is a candidate drug for the treatment of AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Geraniaceae/chemistry
- Leukemia, Myeloid, Acute/drug therapy
- Mice, Inbred BALB C
- Mice, SCID
- Network Pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Xin Zhang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Jingjing Ma
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Xinqi Zheng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Yue Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
2
|
Identification of the 7-lncRNA Signature as a Prognostic Biomarker for Acute Myeloid Leukemia. DISEASE MARKERS 2021; 2021:8223216. [PMID: 34966465 PMCID: PMC8712118 DOI: 10.1155/2021/8223216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
A lot of evidence has emphasized the function of long noncoding RNAs (lncRNAs) in tumors' development and progression. Nevertheless, there is still a lack of lncRNA biomarkers that can predict the prognosis of acute myeloid leukemia (AML). Our goal was to develop a lncRNA marker with prognostic value for the survival of AML. AML patients' RNA sequencing data as well as clinical characteristics were obtained from the public TARGET database. Then, differentially expressed lncRNAs were identified in female and male AML samples. By adopting univariate and multivariate Cox regression analyses, AML patients' survival was predicted by a seven-lncRNA signature. It was found that 95 abnormal expressed lncRNAs existed in AML. Then, the analysis of multivariate Cox regression showed that, among them, 7 (LINC00461, RP11-309M23.1, AC016735.2, RP11-61I13.3, KIAA0087, RORB-AS1, and AC012354.6) had an obvious prognostic value, and according to their cumulative risk scores, these 7 lncRNA signatures could independently predict the AML patients' overall survival. Overall, the prognosis of AML patients could be predicted by a reliable tool, that is, seven-lncRNA prognostic signature.
Collapse
|
3
|
Zhu G, Shen Q, Jiang H, Ji O, Zhu L, Zhang L. Curcumin inhibited the growth and invasion of human monocytic leukaemia SHI-1 cells in vivo by altering MAPK and MMP signalling. PHARMACEUTICAL BIOLOGY 2020; 58:25-34. [PMID: 31854220 PMCID: PMC6968541 DOI: 10.1080/13880209.2019.1701042] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/16/2019] [Accepted: 11/30/2019] [Indexed: 05/20/2023]
Abstract
Context: Curcumin, a polyphenolic compound extracted from the rhizome of the tropical plant Curcuma longa L. (Zingiberaceae), has been considered as a cancer chemopreventive drug by American National Cancer Institute.Objective: To examine the effect of curcumin on acute monocytic leukaemia SHI-1 cells in vivo.Materials and methods: The SHI-1 cells (1 × 106 cells in 0.1 mL PBS) were injected subcutaneously into the right flanks of the female SCID mice. Curcumin dissolved in olive oil (15 and 30 mg/kg) was administered (i.p.) to mice once a day for 15 days while the control group received olive oil injection. Tumour proliferation and apoptosis were examined by PCNA, TUNEL and cleaved caspase-3 staining. The expression of MAPK, NF-κB, MMP9, MMP2 and vimentin were confirmed by RT-PCR, immunohistochemistry or western blotting.Results: Administration of curcumin significantly inhibited tumour growth, as the tumour weight decreased from 0.67 g (control) to 0.47 g (15 mg/kg) and 0.35 g (30 mg/kg). Curcumin inhibited the expression of PCNA and increased the degree of TUNEL and cleaved caspase-3 staining in tumour tissue. The results of western blotting showed that curcumin treatment inhibited NF-κB and ERK signalling while activating p38 and JNK. Moreover, curcumin attenuated the mRNA transcription and protein expression of MMP2 and MMP9. Curcumin also suppressed the level of vimentin.Discussion and conclusions: Our study demonstrates that curcumin can inhibit the growth and invasion of human monocytic leukaemia in vivo, suggesting the possible use of curcumin for anti-metastasis in leukaemia and the value of determining its unique target.
Collapse
Affiliation(s)
- Guohua Zhu
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
- CONTACT Guohua Zhu First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qun Shen
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Hematology, First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Jiang
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ou Ji
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Zhu
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linyang Zhang
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Ferrara F, Picardi A. Is outcome of older people with acute myeloid leukemia improving with new therapeutic approaches and stem cell transplantation? Expert Rev Hematol 2020; 13:99-108. [PMID: 31922453 DOI: 10.1080/17474086.2020.1715207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The clinical outcome of older patients with acute myeloid leukemia (AML) is still poor, especially for those who are unfit to treatments aimed at altering the natural course of the disease. Hypomethylating agents (HMA) offer an important therapeutic opportunity to a consistent number of patients, but long-term results are largely unsatisfactory.Area covered: Recently, a number of new agents have been registered for AML, some of which selectively available for older patient population, with promising results in terms of response rate and survival. Furthermore, the upper age limit for allogeneic stem cell transplantation is constantly increasing, so that this procedure is offered and actually given to an increasing number of older patients with AML. A literature review was conducted of the PubMed database for articles published in English as well as for abstracts from most important and recent hematology meetings on AML in older patients.Expert opinion: Appropriate selection among different options on the basis of clinical fitness and molecular findings at diagnosis as well as at relapse would result in improvement of therapeutic results, sparing unnecessary toxicity and optimizing health systems resources.
Collapse
Affiliation(s)
- Felicetto Ferrara
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy
| | - Alessandra Picardi
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy.,Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev 2019; 36:70-87. [PMID: 31101526 DOI: 10.1016/j.blre.2019.04.005] [Citation(s) in RCA: 446] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/06/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disorder of the bone marrow which is characterized by the clonal expansion and differentiation arrest of myeloid progenitor cells. The age-adjusted incidence of AML is 4.3 per 100,000 annually in the United States (US). Incidence increases with age with a median age at diagnosis of 68 years in the US. The etiology of AML is heterogeneous. In some patients, prior exposure to therapeutic, occupational or environmental DNA-damaging agents is implicated, but most cases of AML remain without a clear etiology. AML is the most common form of acute leukemia in adults and has the shortest survival (5-year survival = 24%). Curative therapies, including intensive chemotherapy and allogeneic stem cell transplantation, are generally applicable to a minority of patients who are younger and fit, while most older individuals exhibit poor prognosis and survival. Differences in patient outcomes are influenced by disease characteristics, access to care including active therapies and supportive care, and other factors. After many years without therapeutic advances, several new therapies have been approved and are expected to impact patient outcomes, especially for older patients and those with refractory disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Rong Wang
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, USA
| | - Amy Davidoff
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Health Policy and Management, School of Public Health, Yale University, New Haven, USA
| | - Xiaomei Ma
- Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA; Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA; Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University, New Haven, USA.
| |
Collapse
|
6
|
Targeting acute myeloid leukemia by drug-induced c-MYB degradation. Leukemia 2017; 32:882-889. [PMID: 29089643 DOI: 10.1038/leu.2017.317] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Despite advances in our understanding of the molecular basis for particular subtypes of acute myeloid leukemia (AML), effective therapy remains a challenge for many individuals suffering from this disease. A significant proportion of both pediatric and adult AML patients cannot be cured and since the upper limits of chemotherapy intensification have been reached, there is an urgent need for novel therapeutic approaches. The transcription factor c-MYB has been shown to play a central role in the development and progression of AML driven by several different oncogenes, including mixed lineage leukemia (MLL)-fusion genes. Here, we have used a c-MYB gene expression signature from MLL-rearranged AML to probe the Connectivity Map database and identified mebendazole as a c-MYB targeting drug. Mebendazole induces c-MYB degradation via the proteasome by interfering with the heat shock protein 70 (HSP70) chaperone system. Transient exposure to mebendazole is sufficient to inhibit colony formation by AML cells, but not normal cord blood-derived cells. Furthermore, mebendazole is effective at impairing AML progression in vivo in mouse xenotransplantation experiments. In the context of widespread human use of mebendazole, our data indicate that mebendazole-induced c-MYB degradation represents a safe and novel therapeutic approach for AML.
Collapse
|
7
|
Wu H, Wang M, Dai B, Zhang Y, Yang Y, Li Q, Duan M, Zhang X, Wang X, Li A, Zhang L. Novel CD123-aptamer-originated targeted drug trains for selectively delivering cytotoxic agent to tumor cells in acute myeloid leukemia theranostics. Drug Deliv 2017; 24:1216-1229. [PMID: 28845698 PMCID: PMC8241133 DOI: 10.1080/10717544.2017.1367976] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Since conventional chemotherapy for acute myeloid leukemia (AML) has its limitations, a theranostic platform with targeted and efficient drug transport is in demand. In this study, we developed the first CD123 (AML tumor marker) aptamers and designed a novel CD123-aptamer-mediated targeted drug train (TDT) with effective, economical, biocompatible and high drug-loading capacity. These two CD123 aptamers (termed as ZW25 and CY30, respectively) can bind to a CD123 peptide epitope and CD123 + AML cells with high specificities and KD of 29.41 nM and 15.38 nM, respectively, while has minimal cross reactivities to albumin, IgG and trypsin. Further, TDT is self-assembled from two short primers by ligand-modified ZW25 that acted as initiation position for elongation, while intercalated by doxorubicin (Dox). TDT is capable of transporting high capacity of Dox to CD123 + cells and retains the efficacy of Dox, while significantly reducing drug uptake and eased toxicity to CD123- cells in vitro (p < .01). Moreover, TDT can ease Dox cytoxicity to normal tissues, prolong survivals and inhibit tumor growth of mouse xenograft tumor model in vivo. These suggest that CD123 aptamer and CD123 aptamer-mediated targeted drug delivery system may have potential applications for selective delivery cytotoxic agents to CD123-expressing tumors in AML theranostics.
Collapse
Affiliation(s)
- Haibin Wu
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Wang
- Department of Orthopedics, The No.11 Hospital of PLA, YiNing, XinJiang, People’s Republic of China
| | - Bo Dai
- Shaanxi Center for Stem Cell Application Engineering Research, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yanmin Zhang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Qiao Li
- Clinical Laboratory, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Mingyue Duan
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xi Zhang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaomei Wang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Anmao Li
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Liyu Zhang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|