1
|
Yadav PS, Hajare AA, Patil KS. Design and development of Fujicalin-based axitinib liquisolid compacts for improved dissolution and bioavailability to treat renal cell carcinoma. Eur J Pharm Biopharm 2024; 204:114506. [PMID: 39306200 DOI: 10.1016/j.ejpb.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/27/2024]
Abstract
Poor dissolution of axitinib (AXT) limits its effectiveness through the oral route. The present study investigated, prospective of liquisolid (LS) technology to improve dissolution rate and oral bioavailability of AXT to treat renal cell carcinoma. LS compacts were fabricated with PEG 200, Fujicalin SG, and Aerosil 200 as solvent, carrier, and coat material, respectively. The behavior of LS-systems during tabletting was investigated using Kawakita, Heckel, and Leuenberger analysis. LS compacts were examined for P-XRD, DSC, SEM, and in vitro drug dissolution. For optimization, a 32 full factorial design was utilized. Cell line A498 was utilized for in vitro cytotoxicity study. A bioavailability study was performed using rabbits. DSC and P-XRD analysis confirmed the transition of crystalline AXT to its partial amorphization and molecular dispersion. Consequently, LS6 demonstrated a significantly rapid drug dissolution (Q20; >99 %) than the directly compressed tablets (18.05 %). Additionally, 2.03-fold increase in oral bioavailability, and inhibited dose-dependent cell growth with 1.75-fold increased apoptosis rate. Overall, an LS6 compact consisting of 15 % AXT concentration in PEG 200 and a 20 w/w ratio of Fujicalin SG: Aerosil 200 exhibited improved formulation properties, enhanced dissolution rate, and bioavailability. Thus developed potential product may contribute low-cost production with patient-improved survival expectations.
Collapse
Affiliation(s)
- Priyanka S Yadav
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Shivaji University Kolhapur, Near Chitranagari - 416013, Maharashtra, India.
| | - Ashok A Hajare
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Palus, Sangli, 416310, Lonere, Maharashtra, India.
| | - Kiran S Patil
- Department of Pharmaceutical Quality Assurance, SWVSM's Tatyasaheb Kore College of Pharmacy, Shivaji University Kolhapur, Warananagar - 416113, Maharashtra, India.
| |
Collapse
|
2
|
Jiang Z, Fang Z, Hong D, Wang X. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems. Int J Nanomedicine 2024; 19:7383-7398. [PMID: 39050878 PMCID: PMC11268745 DOI: 10.2147/ijn.s467222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
Tumor vessels characterized by abnormal functions and structures hinder the infiltration and immune antigen presentation of immune cells by inducing the formation of an immunosuppressive microenvironment ("cold" environment). Vascular-targeted therapy has been proven to enhance immune stimulation and the effectiveness of immunotherapy by modulating the "cold" microenvironment, such as hypoxia and an acidic microenvironment. Notably, a therapeutic strategy based on "vascular-immune" crosstalk can achieve dual regulation of tumor vessels and the immune system by reprogramming the tumor microenvironment (TME), thus forming a positive feedback loop between tumor vessels and the immune microenvironment. From this perspective, we discuss the factors of tumor angiogenesis and "cold" TME formation. Building on this foundation, some vascular-targeted therapeutic drugs will be elaborated upon in detail to achieve dual regulation of tumor vessels and immunity. More importantly, we focus on cutting-edge nanotechnology in view of "vascular-immune" crosstalk and discuss the rational fabrication of tailor-made nanosystems for efficiently enhancing immunotherapy.
Collapse
Affiliation(s)
- Zhijie Jiang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Zhujun Fang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Dongsheng Hong
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
3
|
Zhang T, Gu J, Wang X, Lu Y, Cai K, Li H, Nie Y, Chen X, Wang J. A novel liver zonation phenotype-associated molecular classification of hepatocellular carcinoma. Front Immunol 2023; 14:1140201. [PMID: 36936935 PMCID: PMC10017747 DOI: 10.3389/fimmu.2023.1140201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background Liver zonation is a unique phenomenon in which the liver exhibits distinct functions among hepatocytes along the radial axis of the lobule. This phenomenon can cause the sectionalized initiation of several liver diseases, including hepatocellular carcinoma (HCC). However, few studies have explored the zonation features of HCC. Methods Four single-cell RNA sequencing datasets were used to identify hepatocyte-specific zonation markers. Integrative analysis was then performed with a training RNA-seq cohort (616 HCC samples) and an external validating microarray cohort (285 HCC samples) from the International Cancer Genome Consortium, The Cancer Genome Atlas, Gene Expression Omnibus, and EMBL's European Bioinformatics Institute for clustering using non-negative matrix factorization consensus clustering based on zonation genes. Afterward, we evaluated the prognostic value, clinical characteristics, transcriptome and mutation features, immune infiltration, and immunotherapy response of the HCC subclasses. Results A total of 94 human hepatocyte-specific zonation markers (39 central markers and 55 portal markers) were identified for the first time. Subsequently, three subgroups of HCC, namely Cluster1, Cluster2, and Cluster3 were identified. Cluster1 exhibited a non-zonational-like signature with the worst prognosis. Cluster2 was intensively associated with a central-like signature and exhibited low immune infiltration and sensitivity toward immune blockade therapy. Cluster3 was intensively correlated with a portal-like signature with the best prognosis. Finally, we identified candidate therapeutic targets and agents for Cluster1 HCC samples. Conclusion The current study established a novel HCC classification based on liver zonation signature. By classifying HCC into three clusters with non-zonational-like (Cluster1), central-like (Cluster2), and portal-like (Cluster3) features, this study provided new perspectives on the heterogeneity of HCC and shed new light on delivering precision medicine for HCC patients.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Gu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoyao Lu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingli Nie
- Department of Dermatology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Novel indazole derivatives as potent apoptotic antiproliferative agents by multi-targeted mechanism: Synthesis and biological evaluation. Bioorg Chem 2022; 126:105922. [DOI: 10.1016/j.bioorg.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022]
|
5
|
Wei W, Liu Z, Wu X, Gan C, Su X, Liu H, Que H, Zhang Q, Xue Q, Yue L, Yu L, Ye T. Synthesis and biological evaluation of indazole derivatives as anti-cancer agents. RSC Adv 2021; 11:15675-15687. [PMID: 35481216 PMCID: PMC9029309 DOI: 10.1039/d1ra01147b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
Several FDA approved small molecule anti-cancer drugs contain indazole scaffolds. Here, we report the design, synthesis and biological evaluation of a series of indazole derivatives. In vitro antiproliferative activity screening showed that compound 2f had potent growth inhibitory activity against several cancer cell lines (IC50 = 0.23-1.15 μM). Treatment of the breast cancer cell line 4T1 with 2f inhibited cell proliferation and colony formation. 2f dose-dependently promoted the apoptosis of 4T1 cells, which was connected with the upregulation of cleaved caspase-3 and Bax, and downregulation of Bcl-2. 2f also decreased the mitochondrial membrane potential and increased the levels of reactive oxygen species (ROS) in 4T1 cells. Additionally, treatment with 2f disrupted 4T1 cells migration and invasion, and the reduction of matrix metalloproteinase metalloproteinase-9 (MMP9) and increase of tissue inhibitor matrix metalloproteinase 2 (TIMP2) were also observed. Moreover, 2f could suppress the growth of the 4T1 tumor model without obvious side effects in vivo. Taken together, these results identified 2f as a potential small molecule anti-cancer agent.
Collapse
Affiliation(s)
- Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Zhihao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Qianyu Zhang
- Research Center for Public Health & Preventive Medicine, West China School of Public Health & Healthy Food Evaluation Research Center, West China Fourth Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Qiang Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Luoting Yu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
6
|
Lu P, Liang W, Li J, Hong Y, Chen Z, Liu T, Dong P, Huang H, Zhang T, Jiang J. A Cost-Effectiveness Analysis: First-Line Avelumab Plus Axitinib Versus Sunitinib for Advanced Renal-Cell Carcinoma. Front Pharmacol 2020; 11:619. [PMID: 32457618 PMCID: PMC7225300 DOI: 10.3389/fphar.2020.00619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Compared with the standard of care with sunitinib, avelumab plus axitinib can increase progression-free survival in the first-line of advanced renal cell carcinoma (RCC), but the economic effect of the treatment is unknown. The purpose of the research was to evaluate the cost-effectiveness of the avelumab plus axitinib versus sunitinib in first-line treatment for advanced RCC from the US payer perspective. Methods A Markov model was developed to evaluate the economic and health outcomes of avelumab plus axitinib vs sunitinib in the first-line setting for advanced RCC. The clinical data were obtained from the JAVELIN Renal 101 Clinical Trials. Deterministic and probabilistic sensitivity analyses were performed to assess uncertainty in the model. Health outcomes were measured in quality-adjusted life-years (QALYs). Results The incremental cost-effectiveness ratio (ICER) of avelumab plus axitinib compared with sunitinib was $565,232 per QALY, the costs were $884,626 and $669,838, QALYs were 3.67 and 3.29, respectively. Sensitivity analysis demonstrated that differences in utilities in PFS and after progression were the most influential factors within the model. When avelumab was at 30% of the full price or axitinib was at 40% of the full price, avelumab and axitinib were approved to be cost-effective if the WTP threshold was $150,000 per QALY. The subgroup analysis showed the ICER of avelumab plus axitinib compared with sunitinib for the patients with PD-L1–positive tumors was $588,105. Conclusion Avelumab plus axitinib in the first-line treatment was not cost-effective in comparison with sunitinib when the threshold of willingness to pay (WTP) was $150,000 per QALY.
Collapse
Affiliation(s)
- Peiyao Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Weiting Liang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiahao Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanming Hong
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Pei Dong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongbing Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tiantian Zhang
- College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China
| | - Jie Jiang
- College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University, Guangzhou, China.,Dongguan Institute of Jinan University, Dongguan, China
| |
Collapse
|