1
|
Wang Y, Kang X, Kang X, Yang F. S100A6: molecular function and biomarker role. Biomark Res 2023; 11:78. [PMID: 37670392 PMCID: PMC10481514 DOI: 10.1186/s40364-023-00515-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
S100A6 (also called calcyclin) is a Ca2+-binding protein that belongs to the S100 protein family. S100A6 has many functions related to the cytoskeleton, cell stress, proliferation, and differentiation. S100A6 also has many interacting proteins that are distributed in the cytoplasm, nucleus, cell membrane, and outside the cell. Almost all these proteins interact with S100A6 in a Ca2+-dependent manner, and some also have specific motifs responsible for binding to S100A6. The expression of S100A6 is regulated by several transcription factors (such as c-Myc, P53, NF-κB, USF, Nrf2, etc.). The expression level depends on the specific cell type and the transcription factors activated in specific physical and chemical environments, and is also related to histone acetylation, DNA methylation, and other epigenetic modifications. The differential expression of S100A6 in various diseases, and at different stages of those diseases, makes it a good biomarker for differential diagnosis and prognosis evaluation, as well as a potential therapeutic target. In this review, we mainly focus on the S100A6 ligand and its transcriptional regulation, molecular function (cytoskeleton, cell stress, cell differentiation), and role as a biomarker in human disease and stem cells.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Kang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China.
| | - Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.
- The Orthopedics Department of the Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730000, PR China.
| |
Collapse
|
2
|
Zhai Y, Meng F, Li J, Ma J, Shen L, Zhang W. Upregulation of S100A6 and its relation with CD34 + cells apoptosis in high-risk myelodysplastic syndromes patients. Heliyon 2023; 9:e18947. [PMID: 37609402 PMCID: PMC10440510 DOI: 10.1016/j.heliyon.2023.e18947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Objectives Myelodysplastic syndromes (MDS) are a group of myeloid malignancies characterized by peripheral blood cytopenia and hematopoietic dysplasia that often progress to acute myeloid leukemia (AML). Increased apoptosis of normal hematopoietic cells and decreased apoptosis of malignant clonal hematopoietic cells in patients with MDS is some of the mechanisms leading to ineffective hematopoietic cells in the bone marrow. S100 calcium-binding protein A6 (S100A6) is upregulated in many malignancies. The overexpression of S100A6 in these malignancies has been associated with proliferation, migration, and invasion phenotypes in cancer cells, and we aimed to investigate the expression of S100A6 in CD34+ cells and the relationship between S100A6 expression and apoptosis of CD34+ cells in high-risk patients with MDS. Methods We measured S100A6 mRNA expression in bone marrow (BM) CD34+ cells from high-risk patients with MDS using RT-PCR. Next, we examined S100A6 expression in CD34+ cells using flow cytometry. We also analyzed the correlation between CD34+ cell apoptosis and S100A6 expression in high-risk patients with MDS. Results Our data showed increased S100A6 mRNA expression in CD34+ cells in patients with MDS (1.05 ± 0.69 vs. 0.17 ± 0.12; P<0.01). The expression of S100A6 in BM CD34+ cells also increased (58.40 ± 13.18 vs. 45.83 ± 15.01). The expression of S100A6 in CD34+ cells and apoptosis of CD34+ cells were negatively correlated in patients (r = -0.75; P < 0.01). Conclusions Collectively, S100A6 may be a potential marker of CD34+ cells in high-risk patients with MDS and may participate in the pathological behaviors of CD34+ cells, such as evasion of apoptosis. Thus, S100A6 may be a potential target for eliminating minimal residual disease.
Collapse
Affiliation(s)
- Yan Zhai
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanqiao Meng
- Department of Hematology, Army Medical Center of PLA (Daping Hospital), Army Medical University, Chongqing, China
| | - Jiaojiao Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Junlan Ma
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Shen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Yang F, Ma J, Zhu D, Wang Z, Li Y, He X, Zhang G, Kang X. The Role of S100A6 in Human Diseases: Molecular Mechanisms and Therapeutic Potential. Biomolecules 2023; 13:1139. [PMID: 37509175 PMCID: PMC10377078 DOI: 10.3390/biom13071139] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
S100A6, also known as calcyclin, is a low-molecular-weight Ca2+-binding protein from the S100 family that contains two EF-hands. S100A6 is expressed in a variety of mammalian cells and tissues. It is also expressed in lung, colorectal, pancreatic, and liver cancers, as well as other cancers such as melanoma. S100A6 has many molecular functions related to cell proliferation, the cell cycle, cell differentiation, and the cytoskeleton. It is not only involved in tumor invasion, proliferation, and migration, but also the pathogenesis of other non-neoplastic diseases. In this review, we focus on the molecular mechanisms and potential therapeutic targets of S100A6 in tumors, nervous system diseases, leukemia, endometriosis, cardiovascular disease, osteoarthritis, and other related diseases.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jinglin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Daxue Zhu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yanhu Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (F.Y.); (X.H.); (G.Z.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
4
|
Tsai MH, Lin CH, Tsai KW, Lin MH, Ho CJ, Lu YT, Weng KP, Lin Y, Lin PH, Li SC. S100A6 Promotes B Lymphocyte Penetration Through the Blood-Brain Barrier in Autoimmune Encephalitis. Front Genet 2019; 10:1188. [PMID: 31850060 PMCID: PMC6901080 DOI: 10.3389/fgene.2019.01188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autoimmune encephalitis (AE) is a severe neurological disease. The brain of the AE patient is attacked by a dysregulated immune system, which is caused by the excessive production of autoantibodies against neuronal receptors and synaptic proteins. AE is also characterized by the uncontrolled B lymphocyte infiltration through the blood–brain barrier (BBB) layer, and the investigation of the underlying mechanism involved in this infiltration may facilitate the discovery of novel therapies for AE. However, few AE-related studies have focused on this issue. In this study, we aimed to identify the factors involved in B lymphocyte infiltration in AE. For this purpose, we first enrolled four healthy control and five AE subjects, collecting their serum and/or total white blood cell samples. The white blood cell samples were further used for collecting RNA and DNA. Then, we simulated the in vivo B lymphocyte infiltration with an in vitro leukocyte transendothelial migration model. It turned out that AE serum treatment significantly and specifically promoted B cells to penetrate the BBB endothelial layer without affecting neutrophils. Next, through genome-wide DNA methylation assays on bisulfite-conversion DNA samples, we identified S100A6 and S100A11 as potential hypo-methylated disease genes in the AE samples. Further qPCR assays demonstrated their upregulation in AE samples, reflecting the negative correlations between gene expression and DNA methylation. Finally, recombinant S100A6 protein treatment significantly increased B lymphocyte infiltration through the BBB endothelial layer, which partially recapitulated the effect of AE serum. In summary, by using an in vitro leukocyte transendothelial migration model, we confirmed that S100A6 promoted B lymphocyte to penetrate the BBB endothelial layer, which is similar to the in vivo clinical manifestations of AE. Therefore, further studies on how the S100A6 protein facilitates B lymphocyte infiltration and on whether other factors in serum also contribute to this phenomenon are likely to improve our understanding of AE and hopefully to reveal novel therapeutic targets for this emerging treatable neurological disorder.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ken-Pen Weng
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Yuyu Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Zheng W, Fan W, Feng N, Lu N, Zou H, Gu J, Yuan Y, Liu X, Bai J, Bian J, Liu Z. T he Role of miRNAs in Zearalenone-Promotion of TM3 Cell Proliferation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091517. [PMID: 31035709 PMCID: PMC6540048 DOI: 10.3390/ijerph16091517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. The aim of this study was to detect the role of miRNAs in ZEA-mediated induction of cell proliferation. The effects of ZEA on cell proliferation were assessed using a cell counting kit assay and xCELLigence system. Micro-RNA sequencing was performed after treatment of TM3 cells with ZEA (0.01 μmol/L) for different time periods (0, 2, 6 and 18 h). Cell function and pathway analysis of the miRNA target genes were performed by Ingenuity Pathway Analysis (IPA). We found that ZEA promotes TM3 cell proliferation at low concentrations. miRNA sequenceing revealed 66 differentially expressed miRNAs in ZEA-treated cells in comparison to the untreated control ( p < 0.05). The miRNA sequencing indicated that compared to control group, there were 66 miRNAs significant change (p < 0.05) in ZEA-treated groups. IPA analysis showed that the predicated miRNAs target gene involved in cell Bio-functions including cell cycle, growth and proliferation, and in signaling pathways including MAPK and RAS-RAF-MEK-ERK pathways. Results from flow cytometry and Western Blot analysis validated the predictions that ZEA can affect cell cycle, and the MAPK signaling pathway. Taking these together, the cell proliferation induced ZEA is regulated by miRNAs. The results shed light on the molecular and cellular mechanisms for the mediation of ZEA to induce proliferation.
Collapse
Affiliation(s)
- Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Wentong Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
6
|
Boone DR, Weisz HA, Willey HE, Torres KEO, Falduto MT, Sinha M, Spratt H, Bolding IJ, Johnson KM, Parsley MA, DeWitt DS, Prough DS, Hellmich HL. Traumatic brain injury induces long-lasting changes in immune and regenerative signaling. PLoS One 2019; 14:e0214741. [PMID: 30943276 PMCID: PMC6447179 DOI: 10.1371/journal.pone.0214741] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
There are no existing treatments for the long-term degenerative effects of traumatic brain injury (TBI). This is due, in part, to our limited understanding of chronic TBI and uncertainty about which proposed mechanisms for long-term neurodegeneration are amenable to treatment with existing or novel drugs. Here, we used microarray and pathway analyses to interrogate TBI-induced gene expression in the rat hippocampus and cortex at several acute, subchronic and chronic intervals (24 hours, 2 weeks, 1, 2, 3, 6 and 12 months) after parasagittal fluid percussion injury. We used Ingenuity pathway analysis (IPA) and Gene Ontology enrichment analysis to identify significantly expressed genes and prominent cell signaling pathways that are dysregulated weeks to months after TBI and potentially amenable to therapeutic modulation. We noted long-term, coordinated changes in expression of genes belonging to canonical pathways associated with the innate immune response (i.e., NF-κB signaling, NFAT signaling, Complement System, Acute Phase Response, Toll-like receptor signaling, and Neuroinflammatory signaling). Bioinformatic analysis suggested that dysregulation of these immune mediators—many are key hub genes—would compromise multiple cell signaling pathways essential for homeostatic brain function, particularly those involved in cell survival and neuroplasticity. Importantly, the temporal profile of beneficial and maladaptive immunoregulatory genes in the weeks to months after the initial TBI suggests wider therapeutic windows than previously indicated.
Collapse
Affiliation(s)
- Deborah R. Boone
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Harris A. Weisz
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hannah E. Willey
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Michael T. Falduto
- GenUs Biosystems, Northbrook, Illinois, United States of America
- Paradise Genomics, Inc., Northbrook, Illinois, United States of America
| | - Mala Sinha
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi Spratt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ian J. Bolding
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kathea M. Johnson
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Margaret A. Parsley
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Douglas S. DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hu ZG, Zheng CW, Su HZ, Zeng YL, Lin CJ, Guo ZY, Zhong FD, Yuan GD, He SQ. MicroRNA-329-mediated PTTG1 downregulation inactivates the MAPK signaling pathway to suppress cell proliferation and tumor growth in cholangiocarcinoma. J Cell Biochem 2018; 120:9964-9978. [PMID: 30582202 DOI: 10.1002/jcb.28279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Cholangiocarcinoma (CCA) is a severe malignancy usually producing a poor prognosis and high mortality rate. MicroRNAs (miRNAs) have been reported in association with CCA; however, the role miR-329 plays in the CCA condition still remains unclear. Therefore, this study was conducted to explore the underlying mechanism of which miR-329 is influencing the progression of CCA. This work studied the differential analysis of the expression chips of CCA obtained from the Gene Expression Omnibus database. Next, to determine both the expression and role of pituitary tumor transforming gene-1 (PTTG1) in CCA, the miRNAs regulating PTTG1 were predicted. In the CCA cells that had been intervened with miR-329 upregulation or inhibition, along with PTTG1 silencing, expression of miR-329, PTTG1, p-p38/p38, p-ERK5/ERK5, proliferating cell nuclear antigen (PCNA), Cyclin D1, Bcl-2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and caspase-3 were determined. The effects of both miR-329 and PTTG1 on cell proliferation, cell-cycle distribution, and apoptosis were also assayed. The miR-329 was likely to affect the CCA development through regulation of the PTTG1-mediated mitogen-activated protein kinase (MAPK) signaling pathway. The miR-329 targeted PTTG1, leading to inactivation of the MAPK signaling pathway. Upregulation of miR-329 and silencing of PTTG1 inhibited the CCA cell proliferation, induced cell-cycle arrest, and subsequently promoted apoptosis with elevations in Bax, cleaved caspase-3, and total caspase-3, but showed declines in PCNA, Cyclin D1, and Bcl-2. Moreover, miR-329 was also found to suppress the tumor growth by downregulation of PTTG1. To summarize, miR-329 inhibited the expression of PTTG1 to inactivate the MAPK signaling pathway, thus suppressing the CCA progression, thereby providing a therapeutic basis for the CCA treatment.
Collapse
Affiliation(s)
- Zhi-Gao Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chao-Wen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hui-Zhao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yong-Lian Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Cheng-Jie Lin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhen-Ya Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Fu-Di Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guan-Dou Yuan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
8
|
Discovering proteins for chemoprevention and chemotherapy by curcumin in liver fluke infection-induced bile duct cancer. PLoS One 2018; 13:e0207405. [PMID: 30440021 PMCID: PMC6237386 DOI: 10.1371/journal.pone.0207405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022] Open
Abstract
Modulation or prevention of protein changes during the cholangiocarcinoma (CCA) process induced by Opisthorchis viverrini (Ov) infection may become a key strategy for prevention and treatment of CCA. Monitoring of such changes could lead to discovery of protein targets for CCA treatment. Curcumin exerts anti-inflammatory and anti-CCA activities partly through its protein-modulatory ability. To support the potential use of curcumin and to discover novel target molecules for CCA treatment, we used a quantitative proteomic approach to investigate the effects of curcumin on protein changes in an Ov-induced CCA-harboring hamster model. Isobaric labelling and tandem mass spectrometry were used to compare the protein expression profiles of liver tissues from CCA hamsters with or without curcumin dietary supplementation. Among the dysregulated proteins, five were upregulated in liver tissues of CCA hamsters but markedly downregulated in the CCA hamsters supplemented with curcumin: S100A6, lumican, plastin-2, 14-3-3 zeta/delta and vimentin. Western blot and immunohistochemical analyses also showed similar expression patterns of these proteins in liver tissues of hamsters in the CCA and CCA + curcumin groups. Proteins such as clusterin and S100A10, involved in the NF-κB signaling pathway, an important signaling cascade involved in CCA genesis, were also upregulated in CCA hamsters and were then suppressed by curcumin treatment. Taken together, our results demonstrate the important changes in the proteome during the genesis of O. viverrini-induced CCA and provide an insight into the possible protein targets for prevention and treatment of this cancer.
Collapse
|