1
|
Zaitseva O, Hoffmann A, Otto C, Wajant H. Targeting fibroblast growth factor (FGF)-inducible 14 (Fn14) for tumor therapy. Front Pharmacol 2022; 13:935086. [PMID: 36339601 PMCID: PMC9634131 DOI: 10.3389/fphar.2022.935086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) and is activated by its ligand TNF-like weak inducer of apoptosis (TWEAK). The latter occurs as a homotrimeric molecule in a soluble and a membrane-bound form. Soluble TWEAK (sTWEAK) activates the weakly inflammatory alternative NF-κB pathway and sensitizes for TNF-induced cell death while membrane TWEAK (memTWEAK) triggers additionally robust activation of the classical NF-κB pathway and various MAP kinase cascades. Fn14 expression is limited in adult organisms but becomes strongly induced in non-hematopoietic cells by a variety of growth factors, cytokines and physical stressors (e.g., hypoxia, irradiation). Since all these Fn14-inducing factors are frequently also present in the tumor microenvironment, Fn14 is regularly found to be expressed by non-hematopoietic cells of the tumor microenvironment and most solid tumor cells. In general, there are three possibilities how the tumor-Fn14 linkage could be taken into consideration for tumor therapy. First, by exploitation of the cancer associated expression of Fn14 to direct cytotoxic activities (antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxic payloads, CAR T-cells) to the tumor, second by blockade of potential protumoral activities of the TWEAK/Fn14 system, and third, by stimulation of Fn14 which not only triggers proinflammtory activities but also sensitizes cells for apoptotic and necroptotic cell death. Based on a brief description of the biology of the TWEAK/Fn14 system and Fn14 signaling, we discuss the features of the most relevant Fn14-targeting biologicals and review the preclinical data obtained with these reagents. In particular, we address problems and limitations which became evident in the preclinical studies with Fn14-targeting biologicals and debate possibilities how they could be overcome.
Collapse
Affiliation(s)
- Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Annett Hoffmann
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Harald Wajant,
| |
Collapse
|
2
|
Tao R, Liu Q, Huang R, Wang K, Sun Z, Yang P, Wang J. A Novel TNFSF-Based Signature Predicts the Prognosis and Immunosuppressive Status of Lower-Grade Glioma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3194996. [PMID: 35592520 PMCID: PMC9112166 DOI: 10.1155/2022/3194996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
Purpose Tumour necrosis factor (TNF) superfamilies play important roles in cell proliferation, migration, differentiation, and apoptosis. We believe that TNF has a huge potential and might cast new insight into antitumour therapies. Therefore, we established this signature based on TNF superfamilies. Results A six-gene signature derived from the TNF superfamilies was established. The Riskscore correlated significantly with the expression of immune checkpoint genes and infiltrating M2 macrophages in the tumour specimen. This signature was also associated with mutations in genes that regulate tumour cell proliferation. Univariate and multivariate regression analyses further confirmed the Riskscore, TNFRSF11b, and TNFRSF12a as independent risk factors in The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets. Conclusion Our signature could accurately predict the prognosis of lower-grade gliomas (LGG). In addition, this six-gene signature could predict the immunosuppressive status of LGG and provide evidence that TNF superfamilies had correlations with some critical mutations that could be effectively targeted now.
Collapse
Affiliation(s)
- Rui Tao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kuanyu Wang
- Gamma Knife Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Badia-Villanueva M, Defaus S, Foj R, Andreu D, Oliva B, Sierra A, Fernandez-Fuentes N. Evaluation of Computationally Designed Peptides against TWEAK, a Cytokine of the Tumour Necrosis Factor Ligand Family. Int J Mol Sci 2021; 22:ijms22031066. [PMID: 33494438 PMCID: PMC7866087 DOI: 10.3390/ijms22031066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumour necrosis factor ligand family and has been shown to be overexpressed in tumoral cells together with the fibroblast growth factor–inducible 14 (Fn14) receptor. TWEAK-Fn14 interaction triggers a set of intracellular pathways responsible for tumour cell invasion and migration, as well as proliferation and angiogenesis. Hence, modulation of the TWEAK-Fn14 interaction is an important therapeutic goal. The targeting of protein-protein interactions by external agents, e.g., drugs, remains a substantial challenge. Given their intrinsic features, as well as recent advances that improve their pharmacological profiles, peptides have arisen as promising agents in this regard. Here, we report, by in silico structural design validated by cell-based and in vitro assays, the discovery of four peptides able to target TWEAK. Our results show that, when added to TWEAK-dependent cellular cultures, peptides cause a down-regulation of genes that are part of TWEAK-Fn14 signalling pathway. The direct, physical interaction between the peptides and TWEAK was further elucidated in an in vitro assay which confirmed that the bioactivity shown in cell-based assays was due to the targeting of TWEAK. The results presented here are framed within early pre-clinical drug development and therefore these peptide hits represent a starting point for the development of novel therapeutic agents. Our approach exemplifies the powerful combination of in silico and experimental efforts to quickly identify peptides with desirable traits.
Collapse
Affiliation(s)
- Miriam Badia-Villanueva
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - Sira Defaus
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Ruben Foj
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.-V.); (R.F.)
| | - David Andreu
- Proteomics and Protein Chemistry Group, Department of Experimental and Health Science, Pompeu Fabra University, Barcelona, Biomedical Research Park, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, Pompeu Fabra University, Biomedical Research Park, 08003 Barcelona, Spain;
| | - Angels Sierra
- Laboratory of Oncological Neurosurgery, Hospital Clinic de Barcelona—IDIBAPS, 08036 Barcelona, Spain
- Correspondence: (A.S.); (N.F.-F.)
| | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Vic 08500 Catalonia, Spain
- Correspondence: (A.S.); (N.F.-F.)
| |
Collapse
|
4
|
DNA Methylation Analysis Identifies Patterns in Progressive Glioma Grades to Predict Patient Survival. Int J Mol Sci 2021; 22:ijms22031020. [PMID: 33498463 PMCID: PMC7864199 DOI: 10.3390/ijms22031020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation is an epigenetic change to the genome that impacts gene activities without modification to the DNA sequence. Alteration in the methylation pattern is a naturally occurring event throughout the human life cycle which may result in the development of diseases such as cancer. In this study, we analyzed methylation data from The Cancer Genome Atlas, under the Lower-Grade Glioma (LGG) and Glioblastoma Multiforme (GBM) projects, to identify methylation markers that exhibit unique changes in DNA methylation pattern along with tumor grade progression, to predict patient survival. We found ten glioma grade-associated Cytosine-phosphate-Guanine (CpG) sites that targeted four genes (SMOC1, KCNA4, SLC25A21, and UPP1) and the methylation pattern is strongly associated with glioma specific molecular alterations, primarily isocitrate dehydrogenase (IDH) mutation and chromosome 1p/19q codeletion. The ten CpG sites collectively distinguished a cohort of diffuse glioma patients with remarkably poor survival probability. Our study highlights genes (KCNA4 and SLC25A21) that were not previously associated with gliomas to have contributed to the poorer patient outcome. These CpG sites can aid glioma tumor progression monitoring and serve as prognostic markers to identify patients diagnosed with less aggressive and malignant gliomas that exhibit similar survival probability to GBM patients.
Collapse
|
5
|
Pang FM, Yan H, Mo JL, Li D, Chen Y, Zhang L, Liu ZQ, Zhou HH, Wu J, Li X. Integrative analyses identify a DNA damage repair gene signature for prognosis prediction in lower grade gliomas. Future Oncol 2020; 16:367-382. [PMID: 32065545 DOI: 10.2217/fon-2019-0764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: The DNA damage repair (DDR) pathways play important roles for regulating cancer progression and therapeutic response. IDH mutations, well-known prognosis biomarkers for glioma, lead to hypermethylation of tumor cells and affect genes' expression. Whether IDH mutations affect glioma prognosis through influencing the expression of DDR genes remains unclear. Methods: A total of 272 DDR genes were selected for differential expression and survival analysis. The identified genes were then utilized to construct the prognosis predicting model. Results: PARPBP, PLK3, POLL and WEE1 were found differential expressed between IDH mutations carriers and wild-type carriers, and were associated with survival of low grade glioma (LGG) patients. The predicting algorithm can predicts the prognosis of LGG patients. Conclusion: IDH mutations may affect LGG prognosis through regulation of DDR pathways.
Collapse
Affiliation(s)
- Feng-Mei Pang
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Han Yan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jun-Luan Mo
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China
| | - Dan Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Yi Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Hong-Hao Zhou
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xi Li
- Chronic disease laboratory, Shenzhen Center for Chronic Disease Control & Prevention, Shenzhen, Guangdong, PR China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China
| |
Collapse
|