1
|
Chai D, Shan H, Wang G, Zhang Q, Li H, Fang L, Song J, Liu N, Zhang Q, Yao H, Zheng J. Combining DNA Vaccine and AIM2 in H1 Nanoparticles Exert Anti-Renal Carcinoma Effects via Enhancing Tumor-Specific Multi-functional CD8 + T-cell Responses. Mol Cancer Ther 2018; 18:323-334. [PMID: 30401695 DOI: 10.1158/1535-7163.mct-18-0832] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/02/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Renal carcinoma presents a rapid progression in patients with high metastasis with no effective therapeutic strategy. In this study, we designed a folate-grafted PEI600-CyD (H1) nanoparticle-mediated DNA vaccine containing an adjuvant of absent in melanoma 2 (AIM2) and a tumor-specific antigen of carbonic anhydrase IX (CAIX) for renal carcinoma therapy. Mice bearing subcutaneous human CAIX (hCAIX)-Renca tumor were intramuscularly immunized with H1-pAIM2/pCAIX, H1-pCAIX, H1-pAIM2, or Mock vaccine, respectively. The tumor growth of hCAIX-Renca was significantly inhibited in H1-pAIM2/pCAIX vaccine group compared with the control group. The vaccine activated CAIX-specific CD8+ T-cell proliferation and CTL responses, and enhanced the induction of multi-functional CD8+ T cells (expressing TNF-α, IL-2, and IFN-γ). CD8+ T-cell depletion resulted in the loss of anti-tumor activity of H1-pAIM2/pCAIX vaccine, suggesting that the efficacy of the vaccine was dependent on CD8+ T-cell responses. Lung metastasis of renal carcinoma was also suppressed by H1-pAIM2/pCAIX vaccine treatment accompanied with the increased percentages of CAIX-specific multi-functional CD8+ T cells in the spleen, tumor, and bronchoalveolar lavage as compared with H1-pCAIX vaccine. Similarly, the vaccine enhanced CAIX-specific CD8+ T-cell proliferation and CTL responses. Therefore, these results indicated that H1-pAIM2/pCAIX vaccine exhibits the therapeutic efficacy of anti-renal carcinoma by enhancing tumor-specific multi-functional CD8+ T-cell responses. This vaccine strategy could be a potential and promising approach for the therapy of primary solid or metastasis tumors.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjian Shan
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Chai D, Liu N, Li H, Wang G, Song J, Fang L, Lu Z, Yao H, Zheng J. H1/pAIM2 nanoparticles exert anti-tumour effects that is associated with the inflammasome activation in renal carcinoma. J Cell Mol Med 2018; 22:5670-5681. [PMID: 30160343 PMCID: PMC6201339 DOI: 10.1111/jcmm.13842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is a high metastasis tumour with less effective treatment available currently. Absent in melanoma 2 (AIM2) as a tumour suppressor might be used as a potential therapeutic target for RCC treatment. Here, we found that AIM2 expression was significantly decreased in RCC patient specimens and renal carcinoma cell lines (786‐O and OSRC‐2). To establish a safe and effective AIM2 gene delivery system, we formed the nanoparticles consisting of a folate grafted PEI600‐CyD (H1) nanoparticle‐mediated AIM2 gene (H1/pAIM2) as an effective delivery agent. Delivery of H1/pAIM2 in renal carcinoma cells could remarkably increase the expression of AIM2, and subsequently decrease cell proliferation, migration, and invasion as well as enhance cell apoptosis. In order to evaluate the therapeutic efficacy of AIM2 in vivo, H1/pAIM2 nanoparticles were injected intratumorally into 786‐O‐xenograft mice. Administration of H1/pAIM2 nanoparticles could inhibit the tumour growth as evidenced by reduced tumour volume and weight. Furthermore, Blockade of inflammasome activation triggered by H1/pAIM2 nanoparticles using inflammasome inhibitor YVAD‐CMK abrogated the anti‐tumoral activities of H1/AIM2. These results indicated the therapeutic effect of H1/pAIM2 nanoparticles was mainly attributable to its capability to enhance the inflammasome activation. H1/AIM2 nanoparticles might act as an efficient therapeutic approach for RCC treatment.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Nianli Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hong Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|