1
|
Khalaf AT, Abdalla AN, Ren K, Liu X. Cold atmospheric plasma (CAP): a revolutionary approach in dermatology and skincare. Eur J Med Res 2024; 29:487. [PMID: 39367460 PMCID: PMC11453049 DOI: 10.1186/s40001-024-02088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
Cold atmospheric plasma (CAP) technology has emerged as a revolutionary therapeutic technology in dermatology, recognized for its safety, effectiveness, and minimal side effects. CAP demonstrates substantial antimicrobial properties against bacteria, viruses, and fungi, promotes tissue proliferation and wound healing, and inhibits the growth and migration of tumor cells. This paper explores the versatile applications of CAP in dermatology, skin health, and skincare. It provides an in-depth analysis of plasma technology, medical plasma applications, and CAP. The review covers the classification of CAP, its direct and indirect applications, and the penetration and mechanisms of action of its active components in the skin. Briefly introduce CAP's suppressive effects on microbial infections, detailing its impact on infectious skin diseases and its specific effects on bacteria, fungi, viruses, and parasites. It also highlights CAP's role in promoting tissue proliferation and wound healing and its effectiveness in treating inflammatory skin diseases such as psoriasis, atopic dermatitis, and vitiligo. Additionally, the review examines CAP's potential in suppressing tumor cell proliferation and migration and its applications in cosmetic and skincare treatments. The therapeutic potential of CAP in treating immune-mediated skin diseases is also discussed. CAP presents significant promise as a dermatological treatment, offering a safe and effective approach for various skin conditions. Its ability to operate at room temperature and its broad spectrum of applications make it a valuable tool in dermatology. Finally, introduce further research is required to fully elucidate its mechanisms, optimize its use, and expand its clinical applications.
Collapse
Grants
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
- grant number JCYJ20220530114204010 This work was supported by the Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, China
Collapse
Affiliation(s)
- Ahmad Taha Khalaf
- Medical College, Anhui University of Science and Technology (AUST), Huainan, 232001, China
| | - Ahmed N Abdalla
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kaixuan Ren
- Department of Dermatology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710006, China
| | - Xiaoming Liu
- Department of Dermatology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Chen C, Zhou S, Yang X, Ren M, Qi Y, Mao Y, Yang C. In vitro study of cold atmospheric plasma-activated liquids inhibits malignant melanoma by affecting macrophage polarization through the ROS/JAK2/STAT1 pathway. Biomed Pharmacother 2024; 175:116657. [PMID: 38688171 DOI: 10.1016/j.biopha.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
Melanoma is a prevalent malignant skin tumor known for its high invasive ability and a high rate of metastasis, making clinical treatment exceptionally challenging. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment and play a crucial role in tumor survival and development. Cold atmospheric plasma (CAP) is an emerging tool for tumor treatment that has garnered attention from scholars due to its interaction with non-tumor cells in the tumor microenvironment. Here, we used the macrophage lines THP-1 and RAW264.7, as well as the melanoma cell lines A375 and MV3, as research subjects to investigate the effect of plasma-activated liquid (PAL) on macrophage differentiation and its inhibitory effect on melanoma cell proliferation. We confirmed that the killing effect of PAL on melanoma cells was selective. Using flow cytometry and PCR, we discovered that PAL can influence macrophage differentiation. Through in vitro cell coculture, we demonstrated that PAL-treated macrophages can significantly impede tumor cell development and progression, and the effect is more potent than that of PAL directly targeting tumor cells. Furthermore, we have proposed the hypothesis that PAL promotes the differentiation of macrophages into the M1 type through the ROS/JAK2/STAT1 pathway. To test the hypothesis, we employed catalase and fludarabine to block different sites of the pathway. The results were then validated through Western Blot, qPCR and ELISA. This study illustrates that PAL therapy is an effective tumor immunotherapy and expands the scope of tumor immunotherapy. Furthermore, these findings establish a theoretical foundation for potential clinical applications of PAL.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Shiyun Zhou
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Xingyu Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Miaomiao Ren
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Yongshuang Qi
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Yiwen Mao
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China
| | - Chunjun Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui medical University, Hefei 230601, China.
| |
Collapse
|
3
|
Dezhpour A, Ghafouri H, Jafari S, Nilkar M. Effects of cold atmospheric-pressure plasma in combination with doxorubicin drug against breast cancer cells in vitro and invivo. Free Radic Biol Med 2023; 209:202-210. [PMID: 37890599 DOI: 10.1016/j.freeradbiomed.2023.10.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Cold atmospheric plasma (CAP) has been suggested for medical applications that can be applied indirectly through plasma-activated medium (PAM) and recently it has been introduced as an innovative therapeutic approach for all cancer types. Studies have exhibited that ROS/RNS are key factors in CAP-dependent apoptosis; nevertheless, ROS/RNS stability are weak. Combination therapy is considered an effective strategy to overcome these problems. In the present research, we revealed that the combination of CAP and doxorubicin (DOX) significantly induces the apoptosis of breast cancer cells both in vitro and in vivo. Our results indicated that both Ar and He/O2 CAP treatment as well as DOX drug alone reduced cell growth. CAP/PAM treatment in combination with DOX induced apoptosis in MCF-7 breast cancer cells and 4T1-implanted BALB/c mice, resulting in a significant increase in antitumor activity. The apoptotic effects of CAP-DOX on MCF-7 cells were inferred from altered expression of BAX and cleaved-caspase-3 which mechanistically take place through the mitochondrial pathway mediated by Bcl-2 family members. Besides, the BAX/BCL-2 ratio is significantly higher in the simultaneous treatment of CAP and DOX. This ratio was equal to 2.82 ± 0.24, 2.54 ± 0.30, and 11.27 ± 0.31 for treatment with DOX, He/O2 plasma, and combination treatment, respectively. Additionally, the tumor growth rate of He/O2-PAM + DOX and Ar-PAM + DOX treatments was significantly inhibited by PAM-injection, and the tumor growth rate of PAM alone or DOX alone was slightly reduced. It can be concluded that the effect of PAM + DOX may increase the anticancer activity and decrease the dose required for the chemotherapeutic treatment.
Collapse
Affiliation(s)
- A Dezhpour
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran
| | - H Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - S Jafari
- Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran.
| | - M Nilkar
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Dai X, Wu J, Lu L, Chen Y. Current Status and Future Trends of Cold Atmospheric Plasma as an Oncotherapy. Biomol Ther (Seoul) 2023; 31:496-514. [PMID: 37641880 PMCID: PMC10468422 DOI: 10.4062/biomolther.2023.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 08/31/2023] Open
Abstract
Cold atmospheric plasma (CAP), a redox modulation tool, is capable of inhibiting a wide spectrum of cancers and has thus been proposed as an emerging onco-therapy. However, with incremental successes consecutively reported on the anticancer efficacy of CAP, no consensus has been made on the types of tumours sensitive to CAP due to the different intrinsic characteristics of the cells and the heterogeneous design of CAP devices and their parameter configurations. These factors have substantially hindered the clinical use of CAP as an oncotherapy. It is thus imperative to clarify the tumour types responsive to CAP, the experimental models available for CAP-associated investigations, CAP administration strategies and the mechanisms by which CAP exerts its anticancer effects with the aim of identifying important yet less studied areas to accelerate the process of translating CAP into clinical use and fostering the field of plasma oncology.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Jiale Wu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lianghui Lu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuyu Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
5
|
Wu Y, Yu S, Zhang X, Wang X, Zhang J. The Regulatory Mechanism of Cold Plasma in Relation to Cell Activity and Its Application in Biomedical and Animal Husbandry Practices. Int J Mol Sci 2023; 24:ijms24087160. [PMID: 37108320 PMCID: PMC10138629 DOI: 10.3390/ijms24087160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
As an innovative technology in biological applications, cold plasma is widely used in oral treatment, tissue regeneration, wound healing, and cancer therapy, etc., because of the adjustable composition and temperature which allow the plasma to react with bio-objects safely. Reactive oxygen species (ROS) produced by cold plasma regulate cell activity in an intensity- and time-dependent manner. A low level of ROS produced by cold plasma treatment within the appropriate intensities and times promotes proliferation of skin-related cells and increases angiogenesis, which aid in the acceleration of the wound healing process, while a high level of ROS produced by cold plasma treatment performed at a high intensity or over a long period of time inhibits the proliferation of endothelial cells, keratinocytes, fibroblasts, and cancer cells. Moreover, cold plasma can regulate stem cell proliferation by changing niche interface and producing nitric oxide directly. However, the molecular mechanism of cold plasma regulating cell activity and its potential application in the field of animal husbandry remain unclear in the literature. Therefore, this paper reviews the effects and possible regulatory mechanisms of cold plasma on the activities of endothelial cells, keratinocytes, fibroblasts, stem cells, and cancer cells to provide a theoretical basis for the application of cold plasma to skin-wound healing and cancer therapy. In addition, cold plasma exposure at a high intensity or an extended time shows excellent performances in killing various microorganisms existing in the environment or on the surface of animal food, and preparing inactivated vaccines, while cold plasma treatment within the appropriate conditions improves chicken growth and reproductive capacity. This paper introduces the potential applications of cold plasma treatment in relation to animal-breeding environments, animal health, their growth and reproduction, and animal food processing and preservation, which are all beneficial to the practice of animal husbandry and guarantee good animal food safety results.
Collapse
Affiliation(s)
- Yijiao Wu
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Shiyu Yu
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xiyin Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Yoshikawa N, Nakamura K, Kajiyama H. Current understanding of Plasma-activated solutions for potential cancer therapy. Free Radic Res 2023:1-12. [PMID: 36944223 DOI: 10.1080/10715762.2023.2193308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Cancer therapy consists of multidisciplinary treatment combining surgery, chemotherapy, radiotherapy, and immunotherapy. Despite the elucidation of cancer mechanisms by comprehensive genomic and epigenomic analyses and the development of molecular therapy, drug resistance and severe side effects have presented challenges to the long-awaited development of new therapies. With the rapid technological advances in the last decade, there are now reports concerning potential applications of non-equilibrium atmospheric pressure plasma (NEAPP) in cancer therapy. Two approaches have been tried: direct irradiation with NEAPP (direct plasma) and the administration of a liquid (e.g., culture medium, saline, Ringer's lactate) activated by NEAPP (plasma-activated solutions: PAS). Direct plasma is a unique treatment method in which various active species, charged ions, and photons are delivered to the affected area, but the direct plasma approach has physical limitations related to the device used, such as a limited depth of reach and limited irradiation area. PAS is a liquid that contains reactive oxygen species generated by PAS, and it has been confirmed to have antitumor activity that functions in the same manner as direct plasma. This review introduces recent studies of PAS and informs researchers about the potential of PAS for cancer therapy.Key Policy HighlightsPotential applications of plasma-activated solutions (PAS) in cancer therapy are described.Plasma-activated species generated in PAS, its effect on tumor cells, contribution to non-malignant immune cells, selectivity and safety are presented.The proposed anti-tumor mechanisms of PAS to date are described.Efficacy and safety evaluations of PAS have been studied in experimental animal models, but no human studies have been conducted.
Collapse
Affiliation(s)
- Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| | - Kae Nakamura
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Nagoya
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine
| |
Collapse
|
7
|
Holanda AGA, Cesário BC, Silva VM, Francelino LEC, Nascimento BHM, Damasceno KFA, Ishikawa U, Farias NBS, Junior RFA, Barboza CAG, Junior CA, Antunes JMAP, Moura CEB, Queiroz GF. Use of Cold Atmospheric Plasma in the Treatment of Squamous Cell Carcinoma: in vitro Effects and Clinical Application in Feline Tumors: A Pilot Study. Top Companion Anim Med 2023; 53-54:100773. [PMID: 36990177 DOI: 10.1016/j.tcam.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cold atmospheric plasma (CAP) has shown promising results against squamous cell carcinoma (SCC) in both in vivo and in vitro assays, mainly in humans and mice. Its applicability for treatment of feline tumors, however, remains unknown. This study aimed to evaluate the anticancer effects of CAP on a head and neck squamous cell carcinoma (HNSCC) cell lineage and against a clinical case of cutaneous SCC in a cat. Control and treatment groups employing the HNSCC cell line (SCC-25) were used, the latter exposed to CAP for 60 seconds, 90 seconds, or 120 seconds. The cells were subjected to the MTT assay nitric oxidation assay and thermographic in vitro analyses. The clinical application was performed in one cat with cutaneous SCC (3 sites). The lesions were treated and evaluated by thermographic, histopathological, and immunohistochemical examinations (caspase-3 and TNF-alpha). Treatment of the SCC-25 cells for 90 seconds and 120 seconds resulted in a significant nitrite concentration increase. Decreased cell viability was observed after 24 hours and 48 hours, regardless of exposure time. However, the cell viability reduction observed at 72 hours was significant only in the 120 seconds treatment. In vitro, the temperature decreased for all treatment times, while the plasma induced a slight increase in mean temperature (0.7°C) in the in vivo assay. Two of the 3 clinical tumors responded to the treatment: one with a complete response and the other, partial, while the third (lower lip SCC) remained stable. Both remaining tumors displayed apoptotic areas and increased expression of caspase-3 and TNF-alpha. Adverse effects were mild and limited to erythema and crusting. The CAP exhibited an in vitro anticancer effect on the HNSCC cell line, demonstrated by a dose-dependent cell viability reduction. In vivo, the therapy appears safe and effective against feline cutaneous SCC. The treatment did not result in a clinical response for 1 of 3 lesions (proliferative lower lip tumor), however, a biological effect was still demonstrated by the higher expression of apoptosis indicators.
Collapse
Affiliation(s)
- André G A Holanda
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil.
| | - Bruna C Cesário
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Victória M Silva
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Luiz E C Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Bruno H M Nascimento
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Kássia F A Damasceno
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Naisandra B S Farias
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo F A Junior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos A G Barboza
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clodomiro A Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, RN, Brazil
| | - João M A P Antunes
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Carlos E B Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Genilson F Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
8
|
Wang Y, Mang X, Li X, Cai Z, Tan F. Cold atmospheric plasma induces apoptosis in human colon and lung cancer cells through modulating mitochondrial pathway. Front Cell Dev Biol 2022; 10:915785. [PMID: 35959493 PMCID: PMC9360593 DOI: 10.3389/fcell.2022.915785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cold atmospheric plasma (CAP) is an emerging and promising oncotherapy with considerable potential and advantages that traditional treatment modalities lack. The objective of this study was to investigate the effect and mechanism of plasma-inhibited proliferation and plasma-induced apoptosis on human lung cancer and colon cancer cells in vitro and in vivo. Piezobrush® PZ2, a handheld CAP unit based on the piezoelectric direct discharge technology, was used to generate and deliver non-thermal plasma. Firstly, CAPPZ2 treatment inhibited the proliferation of HT29 colorectal cancer cells and A549 lung cancer cells using CCK8 assay, caused morphological changes at the cellular and subcellular levels using transmission electron microscopy, and suppressed both types of tumor cell migration and invasion using the Transwell migration and Matrigel invasion assay. Secondly, we confirmed plasma-induced apoptosis in the HT29 and A549 cells using the AO/EB staining coupled with flow cytometry, and verified the production of apoptosis-related proteins, such as cytochrome c, PARP, cleaved caspase-3 and caspase-9, Bcl-2 and Bax, using western blotting. Finally, the aforementioned in vitro results were tested in vivo using cell-derived xenograft mouse models, and the anticancer effect was confirmed and attributed to CAP-mediated apoptosis. The immunohistochemical analysis revealed that the expression of cleaved caspase-9, caspase-3, PARP and Bax were upregulated whereas that of Bcl-2 downregulated after CAP treatment. These findings collectively suggest that the activation of the mitochondrial pathway is involved during CAPPZ2-induced apoptosis of human colon and lung cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yanhong Wang
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuran Li
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhengyu Cai
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
| |
Collapse
|
9
|
Tan F, Wang Y, Zhang S, Shui R, Chen J. Plasma Dermatology: Skin Therapy Using Cold Atmospheric Plasma. Front Oncol 2022; 12:918484. [PMID: 35903680 PMCID: PMC9314643 DOI: 10.3389/fonc.2022.918484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cold atmospheric plasma-based plasma medicine has been expanding the diversity of its specialties. As an emerging branch, plasma dermatology takes advantage of the beneficial complexity of plasma constituents (e.g., reactive oxygen and nitrogen species, UV photons, and electromagnetic emission), technical versatility (e.g., direct irradiation and indirect aqueous treatment), and practical feasibility (e.g., hand-held compact device and clinician-friendly operation). The objective of this comprehensive review is to summarize recent advances in the CAP-dominated skin therapy by broadly covering three aspects. We start with plasma optimisation of intact skin, detailing the effect of CAP on skin lipids, cells, histology, and blood circulation. We then conduct a clinically oriented and thorough dissection of CAP treatment of various skin diseases, focusing on the wound healing, inflammatory disorders, infectious conditions, parasitic infestations, cutaneous malignancies, and alopecia. Finally, we conclude with a brief analysis on the safety aspect of CAP treatment and a proposal on how to mitigate the potential risks. This comprehensive review endeavors to serve as a mini textbook for clinical dermatologists and a practical manual for plasma biotechnologists. Our collective goal is to consolidate plasma dermatology’s lead in modern personalized medicine.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery (ORL-HNS), Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- The Royal College of Surgeons in Ireland, Dublin, Ireland
- The Royal College of Surgeons of England, London, United Kingdom
- *Correspondence: Fei Tan,
| | - Yang Wang
- Department of Pathology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Runying Shui
- Department of Surgery, Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Jianghan Chen
- Department of Surgery, Department of Dermatology, Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Zhai SY, Kong MG, Xia YM. Cold Atmospheric Plasma Ameliorates Skin Diseases Involving Reactive Oxygen/Nitrogen Species-Mediated Functions. Front Immunol 2022; 13:868386. [PMID: 35720416 PMCID: PMC9204314 DOI: 10.3389/fimmu.2022.868386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin diseases are mainly divided into infectious diseases, non-infectious inflammatory diseases, cancers, and wounds. The pathogenesis might include microbial infections, autoimmune responses, aberrant cellular proliferation or differentiation, and the overproduction of inflammatory factors. The traditional therapies for skin diseases, such as oral or topical drugs, have still been unsatisfactory, partly due to systematic side effects and reappearance. Cold atmospheric plasma (CAP), as an innovative and non-invasive therapeutic approach, has demonstrated its safe and effective functions in dermatology. With its generation of reactive oxygen species and reactive nitrogen species, CAP exhibits significant efficacies in inhibiting bacterial, viral, and fungal infections, facilitating wound healing, restraining the proliferation of cancers, and ameliorating psoriatic or vitiligous lesions. This review summarizes recent advances in CAP therapies for various skin diseases and implicates future strategies for increasing effectiveness or broadening clinical indications.
Collapse
Affiliation(s)
- Si-yue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Michael G. Kong
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yu-min Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Rebl H, Sawade M, Hein M, Bergemann C, Wende M, Lalk M, Langer P, Emmert S, Nebe B. Synergistic effect of plasma-activated medium and novel indirubin derivatives on human skin cancer cells by activation of the AhR pathway. Sci Rep 2022; 12:2528. [PMID: 35169210 PMCID: PMC8847430 DOI: 10.1038/s41598-022-06523-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/27/2022] [Indexed: 01/07/2023] Open
Abstract
Due to the increasing number of human skin cancers and the limited effectiveness of therapies, research into innovative therapeutic approaches is of enormous clinical interest. In recent years, the use of cold atmospheric pressure plasma has become increasingly important as anti-cancer therapy. The combination of plasma with small molecules offers the potential of an effective, tumour-specific, targeted therapy. The synthesised glycosylated and non glycosylated thia-analogous indirubin derivatives KD87 and KD88, respectively, were first to be investigated for their pharmaceutical efficacy in comparison with Indirubin-3'-monoxime (I3M) on human melanoma (A375) and squamous cell carcinoma (A431) cells. In combinatorial studies with plasma-activated medium (PAM) and KD87 we determined significantly decreased cell viability and cell adhesion. Cell cycle analyses revealed a marked G2/M arrest by PAM and a clear apoptotic effect by the glycosylated indirubin derivative KD87 in both cell lines and thus a synergistic anti-cancer effect. I3M had a pro-apoptotic effect only in A431 cells, so we hypothesize a different mode of action of the indirubin derivatives in the two skin cancer cells, possibly due to a different level of the aryl hydrocarbon receptor and an activation of this pathway by nuclear translocation of this receptor and subsequent activation of gene expression.
Collapse
Affiliation(s)
- Henrike Rebl
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Marie Sawade
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Martin Hein
- grid.10493.3f0000000121858338Institute for Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Claudia Bergemann
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Manuela Wende
- grid.5603.0Institute for Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Michael Lalk
- grid.5603.0Institute for Biochemistry, University of Greifswald, 17487 Greifswald, Germany
| | - Peter Langer
- grid.10493.3f0000000121858338Institute for Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Steffen Emmert
- grid.413108.f0000 0000 9737 0454Clinic and Polyclinic for Dermatology and Venerology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Barbara Nebe
- grid.413108.f0000 0000 9737 0454Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
12
|
Freund E, Bekeschus S. Gas Plasma-Oxidized Liquids for Cancer Treatment: Preclinical Relevance, Immuno-Oncology, and Clinical Obstacles. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3029982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Liu J, Yang C, Cheng C, Zhang C, Zhao J, Fu C. In vitro antimicrobial effect and mechanism of action of plasma-activated liquid on planktonic Neisseria gonorrhoeae. Bioengineered 2021; 12:4605-4619. [PMID: 34320914 PMCID: PMC8806901 DOI: 10.1080/21655979.2021.1955548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Neisseria gonorrhoeae (Ng) is highly resistant to treatment, and there is an urgent need for new treatments to alleviate gonococcal resistance caused by antibiotic monotherapy. The antimicrobial effect and mechanism of plasma-activated liquid (PAL) on Ng were evaluated in this study. Upon PAL treatment, extensively analyses on cell culturability, metabolic capacity, intracellular reactive oxygen species (ROS),membrane integrity and nucleic acids for Ng were carried out and significant antimicrobial effects observed.PAL exerted antibacterial effect on Ng and induced bacterial death (6.71-log) following immersion for 30 min and treatment for 120 s. However, bacterial viability test revealed that after immersion in the same PAL, 10.17% of bacteria retained their metabolic capacity. This indicates that bacteria enter a physiological viable but non-culturable state to protect themselves from environmental stress. Confocal fluorescence microscopy and transmission electron microscopy demonstrated that PAL exerts bactericidal effect on Ng and disrupts its morphological structure. PAL may upregulate inflammatory factors and genes to modulate the resistance of Ng and affect the immune status of the host during infection.
Collapse
Affiliation(s)
- Jia Liu
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Chunjun Yang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Chenchen Zhang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Zhao
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Chuyu Fu
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
14
|
Cold Atmospheric Plasma Changes the Amino Acid Composition of Solutions and Influences the Anti-Tumor Effect on Melanoma Cells. Int J Mol Sci 2021; 22:ijms22157886. [PMID: 34360651 PMCID: PMC8346059 DOI: 10.3390/ijms22157886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cold Atmospheric Plasma (CAP) is an ionized gas near room temperature. Its anti-tumor effect can be transmitted either by direct treatment or mediated by a plasma-treated solution (PTS), such as treated standard cell culture medium, which contains different amino acids, inorganic salts, vitamins and other substances. Despite extensive research, the active components in PTS and its molecular or cellular mechanisms are not yet fully understood. The purpose of this study was the measurement of the reactive species in PTS and their effect on tumor cells using different plasma modes and treatment durations. The PTS analysis yielded mode- and dose-dependent differences in the production of reactive oxygen and nitrogen species (RONS), and in the decomposition and modification of the amino acids Tyrosine (Tyr) and Tryptophan (Trp). The Trp metabolites Formylkynurenine (FKyn) and Kynurenine (Kyn) were produced in PTS with the 4 kHz (oxygen) mode, inducing apoptosis in Mel Im melanoma cells. Nitrated derivatives of Trp and Tyr were formed in the 8 kHz (nitrogen) mode, elevating the p16 mRNA expression and senescence-associated ß-Galactosidase staining. In conclusion, the plasma mode has a strong impact on the composition of the active components in PTS and affects its anti-tumor mechanism. These findings are of decisive importance for the development of plasma devices and the effectiveness of tumor treatment.
Collapse
|
15
|
Intracellular Responses Triggered by Cold Atmospheric Plasma and Plasma-Activated Media in Cancer Cells. Molecules 2021; 26:molecules26051336. [PMID: 33801451 PMCID: PMC7958621 DOI: 10.3390/molecules26051336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cold atmospheric plasma (CAP), an ionized gas operating at room temperature, has been increasingly studied with respect to its potential use in medicine, where its beneficial effects on tumor reduction in oncology have been demonstrated. This review discusses the cellular changes appearing in cell membranes, cytoplasm, various organelles, and DNA content upon cells’ direct or indirect exposure to CAP or CAP-activated media/solutions (PAM), respectively. In addition, the CAP/PAM impact on the main cellular processes of proliferation, migration, protein degradation and various forms of cell death is addressed, especially in light of CAP use in the oncology field of plasma medicine.
Collapse
|
16
|
Gan L, Jiang J, Duan JW, Wu XJZ, Zhang S, Duan XR, Song JQ, Chen HX. Cold atmospheric plasma applications in dermatology: A systematic review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000415. [PMID: 33231354 DOI: 10.1002/jbio.202000415] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Cold atmospheric plasma (CAP) applications can potentially lead to effective therapy for numerous skin diseases. Our aim is to systematically review the available data and map the use of CAP in dermatology. PubMed, Embase and Web of science were explored before 2020 for studies regarding the use of CAP in dermatology. A total of 166 studies were finally included. 74.1% of these studies used indirect CAP sources. Most studies used plasma jet (67.5%). Argon was the mostly used working gas (48.2%). Plasma application itself could be direct (89.2%) and indirect (16.3%). The proportion of studies with in vivo results remained 57.2%, of which most concerned direct plasma treatment (97.9%). Analyses performed indicate that CAP has been beneficial in many skin disorders. While, most CAP applications were focused on wound healing and melanoma treatment. This study provides a brief overview of CAP sources and relative medical applications in dermatology.
Collapse
Affiliation(s)
- Lu Gan
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Wei Duan
- The International Joint Research Laboratory for Innovative Design and Manufacturing of Advanced Mechanical Systems, Jihua Laboratory, Foshan, China
| | - Xue Jing Zi Wu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji Quan Song
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Xiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
17
|
Zhang C, Zhao J, Gao Y, Gao J, Lv Y, Yang C. Cold atmospheric plasma treatment for diaper dermatitis: A case report. Dermatol Ther 2021; 34:e14739. [PMID: 33404181 DOI: 10.1111/dth.14739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/30/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Chenchen Zhang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jun Zhao
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yamei Gao
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jing Gao
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yongmei Lv
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Chunjun Yang
- Department of Dermatology, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Dai X, Bazaka K, Thompson EW, Ostrikov K(K. Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States. Cancers (Basel) 2020; 12:cancers12113360. [PMID: 33202842 PMCID: PMC7696697 DOI: 10.3390/cancers12113360] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer treatment is complicated by the distinct phenotypic attractor states in which cancer cells exist within individual tumors, and inherent plasticity of cells in transiting between these states facilitates the acquisition of drug-resistant and more stem cell-like phenotypes in cancer cells. Controlling these crucial transition switches is therefore critical for the long-term success of any cancer therapy. This paper highlights the most promising avenues for controlling cancer state transition events by cold atmospheric plasma (CAP) to enable the development of efficient tools for cancer prevention and management. The key switches in carcinogenesis can be used to halt or reverse cancer progression, and understanding how CAP can modulate these processes is critical for the development of CAP-based strategies for cancer prevention, detection and effective treatment. Abstract Rich in reactive oxygen and nitrogen species, cold atmospheric plasma has been shown to effectively control events critical to cancer progression; selectively inducing apoptosis, reducing tumor volume and vasculature, and halting metastasis by taking advantage of, e.g., synergies between hydrogen peroxide and nitrites. This paper discusses the efficacy, safety and administration of cold atmospheric plasma treatment as a potential tool against cancers, with a focus on the mechanisms by which cold atmospheric plasma may affect critical transitional switches that govern tumorigenesis: the life/death control, tumor angiogenesis and epithelial–mesenchymal transition, and drug sensitivity spectrum. We introduce the possibility of modeling cell transitions between the normal and cancerous states using cold atmospheric plasma as a novel research avenue to enhance our understanding of plasma-aided control of oncogenesis.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Wuhan Ammunition Life-Tech Company, Ltd., Wuhan 430200, China
- Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: ; Tel.: +86-181-6887-0169
| | - Kateryna Bazaka
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2600, Australia;
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia; (E.W.T.); (K.O.)
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
19
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
20
|
Friedman PC. Cold atmospheric pressure (physical) plasma in dermatology: where are we today? Int J Dermatol 2020; 59:1171-1184. [PMID: 32783244 DOI: 10.1111/ijd.15110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Cold atmospheric pressure plasma is physical plasma (essentially ionized gas) created at room temperature and atmospheric pressure, and it has complex effects on cells, tissues, and living organisms. These effects are studied extensively for medical and dermatological use. This article reviews current achievements and new trends in clinical dermatological cold plasma research, discusses the basics of plasma physics and plasma engineering, and describes the most important areas of laboratory plasma research to provide a well-rounded understanding of the nature, present applications, and future promise of this exciting, emerging technology.
Collapse
|
21
|
Gareri C, Bennardo L, De Masi G. Use of a new cold plasma tool for psoriasis treatment: A case report. SAGE Open Med Case Rep 2020; 8:2050313X20922709. [PMID: 32435495 PMCID: PMC7223196 DOI: 10.1177/2050313x20922709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
Cold atmospheric plasma sources are emerging as new potent tools in different fields of medicine, from oncology to dermatology. Psoriasis is a chronic inflammatory disease characterized by the presence of itchy red plaque on skin, known as psoriatic plaques. In this case report, we evaluate the effectiveness of a cold atmospheric plasma treatment on a psoriatic plaque on the hand of a 20-year-old woman. Two quick applications of the procedure led to a complete disappearance of the cutaneous lesion in 14 days. The results of this case show a potential application of this new technique in the dermatological field, as palmo-plantar psoriasis is usually resistant to traditional treatments. A clinical trial would be necessary in order to evaluate the real effectiveness of this plasma.
Collapse
Affiliation(s)
- Clarice Gareri
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luigi Bennardo
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | - Gianluca De Masi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy.,Consorzio RFX, Padova, Italy
| |
Collapse
|
22
|
Yang X, Yang C, Wang L, Cao Z, Wang Y, Cheng C, Zhao G, Zhao Y. Inhibition of basal cell carcinoma cells by cold atmospheric plasma‑activated solution and differential gene expression analysis. Int J Oncol 2020; 56:1262-1273. [PMID: 32319578 DOI: 10.3892/ijo.2020.5009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/21/2020] [Indexed: 11/06/2022] Open
Abstract
Basal cell carcinoma is a common skin tumor. Cold atmospheric plasma (CAP) has attracted increasing attention for its antitumor effects. The aim of the present study was to investigate the effects and related mechanisms of two CAP‑activated solutions on the TE354T basal cell carcinoma and HaCat keratinocyte cell lines. Plasma‑activated solution (PAS) was prepared by CAP irradiation of DMEM and PBS. TE354T cells were treated with PAS in vitro and the effect on cell viability was evaluated by an MTT assay. The apoptosis rate was detected by Annexin V/propidium iodide staining. Furthermore, western blotting and RNA‑sequencing were performed. The present results demonstrated that PAS induced apoptotic signaling in basal cell carcinoma cells, and that this effect was associated with the activation of the MAPK signaling pathway. Therefore, the present study demonstrated that PAS may serve as a novel treatment for basal cell carcinoma.
Collapse
Affiliation(s)
- Xingyu Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Chunjun Yang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Liyun Wang
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Zhicheng Cao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yuan Wang
- Department of Orthopaedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Cheng Cheng
- The Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Guoping Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|