1
|
Senthil N, Pacifici N, Cruz-Acuña M, Diener A, Han H, Lewis JS. An Image Processing Algorithm for Facile and Reproducible Quantification of Vomocytosis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:831-842. [PMID: 38155727 PMCID: PMC10751783 DOI: 10.1021/cbmi.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023]
Abstract
Vomocytosis is a process that occurs when internalized fungal pathogens escape from phagocytes without compromising the viability of the pathogen and the host cell. Manual quantification of time-lapse microscopy videos is currently used as the standard to study pathogen behavior and vomocytosis incidence. However, human-driven quantification of vomocytosis (and the closely related phenomenon, exocytosis) is incredibly burdensome, especially when a large volume of cells and interactions needs to be analyzed. In this study, we designed a MATLAB algorithm that measures the extent of colocalization between the phagocyte and fungal cell (Cryptococcus neoformans; CN) and rapidly reports the occurrence of vomocytosis in a high throughput manner. Our code processes multichannel, time-lapse microscopy videos of cocultured CN and immune cells that have each been fluorescently stained with unique dyes and provides quantitative readouts of the spatiotemporally dynamic process that is vomocytosis. This study also explored metrics, such as the rate of change of pathogen colocalization with the host cell, that could potentially be used to predict vomocytosis occurrence based on the quantitative data collected. Ultimately, the algorithm quantifies vomocytosis events and reduces the time for video analysis from over 1 h to just 10 min, a reduction in labor of 83%, while simultaneously minimizing human error. This tool significantly minimizes the vomocytosis analysis pipeline, accelerates our ability to elucidate unstudied aspects of this phenomenon, and expedites our ability to characterize CN strains for the study of their epidemiology and virulence.
Collapse
Affiliation(s)
- Neeraj Senthil
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Noah Pacifici
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Melissa Cruz-Acuña
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Agustina Diener
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Hyunsoo Han
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
| | - Jamal S. Lewis
- Department
of Biomedical Engineering, University of
California − Davis, Davis, California 95616, United States
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Xu L, Xie X, Li X, Duan W, Qiu L, Liu H, Luo Y. Inflammatory level under different p53 mutation status and the regulation role of curcumin in tumor microenvironment. Immunobiology 2022; 227:152177. [PMID: 35030341 DOI: 10.1016/j.imbio.2022.152177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
The inflammation is tightly associated with tumor development, promoting or inhibiting tumorigenesis. And mutant p53 is speculated to promote inflammation and tumorigenesis. The tumor associated macrophages are usually educated to present the anti-inflammatory profile to tune down antitumor immunity. However, the impact of p53 mutants on macrophages is not clear. Here, we compared the basal inflammatory level and macrophage profiles in tumor cells and tumor samples with different p53 mutations. Data revealed that a lower inflammatory level was maintained in immune organs and tumor cells with p53 point mutations than those with p53 null mutation. Using the tumor cell-derived conditional media to culture macrophages, we found that the media from cells with p53 mutations, especially the point mutations, could decrease M1 markers and inhibit phagocytosis, suggesting the p53 mutation promoted M2 profile polarization. To target the p53 mutation induced M2 macrophage polarization, we applied low-concentration curcumin to the tumor cells with different p53 mutations. The data showed that curcumin could inhibit STAT3 signal and decrease PPARγ and CSF1 in tumor cells and tumor samples. In vitro, the co-culture assays showed that the curcumin treatment shifted p53 mutation educated macrophages back towards M1 profile. In vivo, the curcumin-treated MEFs showed obvious tumor inhibition, and the tumor samples displayed inhibited M2 markers. Results suggested that curcumin could inhibit p53 mutation educated macrophage induction and suppress M2-promoted tumorigenesis. Our study illustrated the inflammatory level under different p53 status and the inflammatory regulated role of curcumin in tumor environment. This study might provide a potential method in tumor personalized treatment aiming immune therapy in different p53 status.
Collapse
Affiliation(s)
- Liping Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiaoli Xie
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xinbo Li
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Wenfang Duan
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lei Qiu
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Huan Liu
- Medical School, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ying Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Guizhou Provincial Key Laboratory & Drug Development on Common Disease, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
3
|
Ye T, Liu J, Zhao W, Gao S, Wang S, Wu F, Zhou H. The hypothesis of tumor-associated macrophages mediating semi-phagocytosis of cancer cells in distant metastasis. Future Oncol 2021; 17:1125-1129. [PMID: 33557616 DOI: 10.2217/fon-2020-1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tweetable abstract Tumor-associated macrophages might promote the distant metastasis of tumor cells by semi-phagocytosis. The authors propose that this newly discovered process occurs in tumor-associated macrophages and may lead to a novel approach for blocking cancer metastasis.
Collapse
Affiliation(s)
- Tingpei Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Wei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shengtao Gao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Shimeng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fanglong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|