1
|
Bertelsen BE, Almås B, Fjermeros K, Viste K, Geisler SB, Sauer T, Selsås K, Geisler J. Superior suppression of serum estrogens during neoadjuvant breast cancer treatment with letrozole compared to exemestane. Breast Cancer Res Treat 2024; 206:347-358. [PMID: 38649619 PMCID: PMC11182829 DOI: 10.1007/s10549-024-07313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The aromatase inhibitor letrozole and the aromatase inactivator exemestane are two of the most pivotal cancer drugs used for endocrine treatment of ER-positive breast cancer in all phases of the disease. Although both drugs inhibit CYP19 (aromatase) and have been used for decades, a direct head-to-head, intra-patient-cross-over comparison of their ability to decrease estrogen synthesis in vivo is still lacking. METHODS Postmenopausal breast cancer patients suitable for neoadjuvant endocrine therapy were randomized to receive either letrozole (2.5 mg o.d.) or exemestane (25 mg o.d.) for an initial treatment period, followed by a second treatment period on the alternative drug (intra-patient cross-over study design). Serum levels of estrone (E1), estradiol (E2), letrozole, exemestane, and 17-hydroxyexemestane were quantified simultaneously using a novel, ultrasensitive LC-MS/MS method established in our laboratory. RESULTS Complete sets of serum samples (baseline and during treatment with letrozole or exemestane) were available from 79 patients, including 40 patients starting with letrozole (cohort 1) and 39 with exemestane (cohort 2). Mean serum estrone and estradiol levels in cohort 1 were 174 pmol/L and 46.4 pmol/L at baseline, respectively. Treatment with letrozole suppressed serum E1 and E2 to a mean value of 0.2 pmol/L and 0.4 pmol/L (P < 0.001). After the cross-over to exemestane, mean serum levels of E1 and E2 increased to 1.4 pmol/L and 0.7 pmol/L, respectively. In cohort 2, baseline mean serum levels of E1 and E2 were 159 and 32.5 pmol/L, respectively. Treatment with exemestane decreased these values to 1.8 pmol/L for E1 and 0.6 pmol/L for E2 (P < 0.001). Following cross-over to letrozole, mean serum levels of E1 and E2 were significantly further reduced to 0.1 pmol/L and 0.4 pmol/L, respectively. Serum drug levels were monitored in all patients throughout the entire treatment and confirmed adherence to the protocol and drug concentrations within the therapeutic range for all patients. Additionally, Ki-67 values decreased significantly during treatment with both aromatase inhibitors, showing a trend toward a stronger suppression in obese women. CONCLUSION To the best of our knowledge, we present here for the first time a comprehensive and direct head-to-head, intra-patient-cross-over comparison of the aromatase inhibitor letrozole and the aromatase inactivator exemestane concerning their ability to suppress serum estrogen levels in vivo. All in all, our results clearly demonstrate that letrozole therapy results in a more profound suppression of serum E1 and E2 levels compared to exemestane.
Collapse
Affiliation(s)
- Bjørn-Erik Bertelsen
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland, University Hospital, Bergen, Norway
| | - Bjørg Almås
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland, University Hospital, Bergen, Norway
| | - Kamilla Fjermeros
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Kristin Viste
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland, University Hospital, Bergen, Norway
| | | | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Selsås
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Akman T, Arendt LM, Geisler J, Kristensen VN, Frigessi A, Köhn-Luque A. Modeling of Mouse Experiments Suggests that Optimal Anti-Hormonal Treatment for Breast Cancer is Diet-Dependent. Bull Math Biol 2024; 86:42. [PMID: 38498130 PMCID: PMC11310292 DOI: 10.1007/s11538-023-01253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/30/2023] [Indexed: 03/20/2024]
Abstract
Estrogen receptor positive breast cancer is frequently treated with anti-hormonal treatment such as aromatase inhibitors (AI). Interestingly, a high body mass index has been shown to have a negative impact on AI efficacy, most likely due to disturbances in steroid metabolism and adipokine production. Here, we propose a mathematical model based on a system of ordinary differential equations to investigate the effect of high-fat diet on tumor growth. We inform the model with data from mouse experiments, where the animals are fed with high-fat or control (normal) diet. By incorporating AI treatment with drug resistance into the model and by solving optimal control problems we found differential responses for control and high-fat diet. To the best of our knowledge, this is the first attempt to model optimal anti-hormonal treatment for breast cancer in the presence of drug resistance. Our results underline the importance of considering high-fat diet and obesity as factors influencing clinical outcomes during anti-hormonal therapies in breast cancer patients.
Collapse
Affiliation(s)
- Tuğba Akman
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway.
- Department of Computer Engineering, University of Turkish Aeronautical Association, 06790, Etimesgut, Ankara, Turkey.
| | - Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Campus AHUS, Oslo, Norway
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Arnoldo Frigessi
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Reis J, Boavida J, Tran HT, Lyngra M, Reitsma LC, Schandiz H, Melles WA, Gjesdal KI, Geisler J, Geitung JT. Assessment of preoperative axillary nodal disease burden: breast MRI in locally advanced breast cancer before, during and after neoadjuvant endocrine therapy. BMC Cancer 2022; 22:702. [PMID: 35752785 PMCID: PMC9233812 DOI: 10.1186/s12885-022-09813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Axillary lymph node (LN) metastasis is one of the most important predictors of recurrence and survival in breast cancer, and accurate assessment of LN involvement is crucial. Determining extent of residual disease is key for surgical planning after neoadjuvant therapy. The aim of the study was to evaluate the diagnostic reliability of MRI for nodal disease in locally advanced breast cancer patients treated with neoadjuvant endocrine therapy (NET). Methods Thirty-three clinically node-positive locally advanced breast cancer patients who underwent NET and surgery were prospectively enrolled. Two radiologists reviewed the axillary nodes at 3 separate time points MRI examinations at baseline (before the first treatment regimen), interim (following at least 2 months after the first cycle and prior to crossing-over), and preoperative (after the final administration of therapy and immediately before surgery). According to LN status after surgery, imaging features and diagnostic performance were analyzed. Results All 33 patients had a target LN reduction, the greatest treatment benefit from week 8 to week 16. There was a positive correlation between the maximal diameter of the most suspicious LN measured by MRI and pathology during and after NET, being highest at therapy completion (r = 0.6, P ≤ .001). Mean and median differences of maximal diameter of the most suspicious LN were higher with MRI than with pathology. Seven of 33 patients demonstrated normal posttreatment MRI nodal status (yrN0). Of these 7 yrN0, 3 exhibited no metastasis on final pathology (ypN0), 2 ypN1 and 2 ypN2. Reciprocally, MRI diagnosed 3 cases of ypN0 as yrN + . Diffusion -weighted imaging (DWI) was the only axillary node characteristic significant when associated with pathological node status (χ2(4) = 8.118, P = .072). Conclusion Performance characteristics of MRI were not completely sufficient to preclude surgical axillary staging. To our knowledge, this is the first study on MRI LN assessment following NET in locally advanced breast cancer, and further studies with larger sample sizes are required to consolidate the results of this preliminary study. Trial Registration Institutional Review Board approval was obtained (this current manuscript is from a prospective, open-label, randomized single-center cohort substudy of the NEOLETEXE trial). NEOLETEXE, a phase 2 clinical trial, was registered on March 23rd, 2015 in the National trial database of Norway and approved by the Regional Ethical Committee of the South-Eastern Health Region in Norway; registration number: REK-SØ-84–2015. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09813-9.
Collapse
Affiliation(s)
- Joana Reis
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway. .,Institute of Clinical Medicine, Campus AHUS, University of Oslo, Postboks 1000, 1478, Lørenskog, Norway. .,Translational Cancer Research Group, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway.
| | - Joao Boavida
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| | - Hang T Tran
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| | - Marianne Lyngra
- Department of Pathology, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| | - Laurens Cornelus Reitsma
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| | - Hossein Schandiz
- Department of Pathology, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| | - Woldegabriel A Melles
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| | - Kjell-Inge Gjesdal
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway.,Sunnmøre MR-Clinic, Agrinorbygget, Langelansveg 15, 6010, Ålesund, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Postboks 1000, 1478, Lørenskog, Norway.,Translational Cancer Research Group, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway.,Department of Oncology, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| | - Jonn Terje Geitung
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway.,Institute of Clinical Medicine, Campus AHUS, University of Oslo, Postboks 1000, 1478, Lørenskog, Norway.,Translational Cancer Research Group, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway
| |
Collapse
|
4
|
Bahrami N, Jabeen S, Tahiri A, Sauer T, Ødegård HP, Geisler SB, Gravdehaug B, Reitsma LC, Selsås K, Kristensen V, Geisler J. Lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients: the potential role of the adipokine leptin. Breast Cancer Res Treat 2021; 190:435-449. [PMID: 34554372 PMCID: PMC8558290 DOI: 10.1007/s10549-021-06399-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/11/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE The aromatase inactivator exemestane may cause clinical disease stabilization following progression on non-steroidal aromatase inhibitors like letrozole in patients with metastatic breast cancer, indicating that additional therapeutic effects, not necessarily related to estrogen-suppression, may be involved in this well-known "lack of cross-resistance". METHODS Postmenopausal women with ER positive, HER-2 negative, locally advanced breast cancer were enrolled in the NEOLETEXE-trial and randomized to sequential treatment starting with either letrozole (2.5 mg o.d.) or exemestane (25 mg o.d.) followed by the alternative aromatase inhibitor. Serum levels of 54 cytokines, including 12 adipokines were assessed using Luminex xMAP technology (multiple ELISA). RESULTS Serum levels of leptin were significantly decreased during treatment with exemestane (p < 0.001), regardless whether exemestane was given as first or second neoadjuvant therapy. In contrast, letrozole caused a non-significant increase in serum leptin levels in vivo. CONCLUSIONS Our findings suggest an additional and direct effect of exemestane on CYP-19 (aromatase) synthesis presumably due to effects on the CYP19 promoter use that is not present during therapy with the non-steroidal aromatase inhibitor letrozole. Our findings provide new insights into the influence of clinically important aromatase inhibitors on cytokine levels in vivo that contribute to the understanding of the clinically observed lack of cross-resistance between non-steroidal and steroidal aromatase inhibitors in breast cancer patients. TRIAL REGISTRATION Registered on March 23rd 2015 in the National trial database of Norway (Registration number: REK-SØ-84-2015).
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shakila Jabeen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | | | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | | | - Knut Selsås
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Clinical Molecular Biology (EPIGEN), Akershus University Hospital, Lørenskog, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Reis J, Thomas O, Lahooti M, Lyngra M, Schandiz H, Boavida J, Gjesdal KI, Sauer T, Geisler J, Geitung JT. Correlation between MRI morphological response patterns and histopathological tumor regression after neoadjuvant endocrine therapy in locally advanced breast cancer: a randomized phase II trial. Breast Cancer Res Treat 2021; 189:711-723. [PMID: 34357493 PMCID: PMC8505284 DOI: 10.1007/s10549-021-06343-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To correlate MRI morphological response patterns with histopathological tumor regression grading system based on tumor cellularity in locally advanced breast cancer (LABC)-treated neoadjuvant with third-generation aromatase inhibitors. METHODS Fifty postmenopausal patients with ER-positive/HER-2-negative LABC treated with neoadjuvant letrozole and exemestane given sequentially in an intra-patient cross-over regimen for at least 4 months with MRI response monitoring at baseline as well as after at least 2 and 4 months on treatment. The MRI morphological response pattern was classified into 6 categories: 0/complete imaging response; I/concentric shrinkage; II/fragmentation; III/diffuse; IV/stable; and V/progressive. Histopathological tumor regression was assessed based on the recommendations from The Royal College of Pathologists regarding tumor cellularity. RESULTS Following 2 and 4 months with therapy, the most common MRI pattern was pattern II (24/50 and 21/50, respectively). After 4 months on therapy, the most common histopathological tumor regression grade was grade 3 (21/50). After 4 months an increasing correlation is observed between MRI patterns and histopathology. The overall correlation, between the largest tumor diameter obtained from MRI and histopathology, was moderate and positive (r = 0.50, P-value = 2e-04). Among them, the correlation was highest in type IV (r = 0.53). CONCLUSION The type II MRI pattern "fragmentation" was more frequent in the histopathological responder group; and types I and IV in the non-responder group. Type II pattern showed the best endocrine responsiveness and a relatively moderate correlation between sizes obtained from MRI and histology, whereas type IV pattern indicated endocrine resistance but the strongest correlation between MRI and histology.
Collapse
Affiliation(s)
- Joana Reis
- Department of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway. .,Institute of Clinical Medicine, Campus AHUS, University of Oslo, Postboks 1000, 1478, Lørenskog, Norway. .,Translational Cancer Research Group, Akershus University Hospital (AHUS), Postboks 1000, 1478, Lørenskog, Norway.
| | - Owen Thomas
- grid.411279.80000 0000 9637 455XHealth Services Research Department, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway
| | - Maryam Lahooti
- grid.411279.80000 0000 9637 455XDepartment of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway
| | - Marianne Lyngra
- grid.411279.80000 0000 9637 455XDepartment of Pathology, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway
| | - Hossein Schandiz
- grid.411279.80000 0000 9637 455XDepartment of Pathology, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway
| | - Joao Boavida
- grid.411279.80000 0000 9637 455XDepartment of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway
| | - Kjell-Inge Gjesdal
- grid.411279.80000 0000 9637 455XDepartment of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway ,Sunnmøre MR-Clinic, Agrinorbygget, Langelansveg 15, 6010 Ålesund, Norway
| | - Torill Sauer
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, Campus AHUS, University of Oslo, Postboks 1000, 1478 Lørenskog, Norway ,grid.411279.80000 0000 9637 455XTranslational Cancer Research Group, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway ,grid.411279.80000 0000 9637 455XDepartment of Pathology, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway
| | - Jürgen Geisler
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, Campus AHUS, University of Oslo, Postboks 1000, 1478 Lørenskog, Norway ,grid.411279.80000 0000 9637 455XTranslational Cancer Research Group, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway ,grid.411279.80000 0000 9637 455XDepartment of Oncology, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway
| | - Jonn Terje Geitung
- grid.411279.80000 0000 9637 455XDepartment of Diagnostic Imaging and Intervention, Akershus University Hospital (AHUS), Postboks 1000, 1478 Lørenskog, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, Campus AHUS, University of Oslo, Postboks 1000, 1478 Lørenskog, Norway
| |
Collapse
|
6
|
Accuracy of breast MRI in patients receiving neoadjuvant endocrine therapy: comprehensive imaging analysis and correlation with clinical and pathological assessments. Breast Cancer Res Treat 2020; 184:407-420. [PMID: 32789592 PMCID: PMC7599143 DOI: 10.1007/s10549-020-05852-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/31/2020] [Indexed: 11/05/2022]
Abstract
Purpose To assess the accuracy of magnetic resonance imaging (MRI) measurements in locally advanced oestrogen receptor-positive and human epidermal growth factor receptor 2-negative breast tumours before, during and after neoadjuvant endocrine treatment (NET) for evaluation of tumour response in comparison with clinical and pathological assessments. Methods This prospective study enrolled postmenopausal patients treated neoadjuvant with letrozole and exemestane given sequentially in an intra-patient cross-over regimen. Fifty-four patients were initially recruited, but only 35 fulfilled the inclusion criteria and confirmed to participate with a median age of 77. Tumours were scanned with MRI prior to treatment, during the eighth week of treatment and prior to surgery. Additionally, changes in longest diameter on clinical examination (CE) and tumour size at pathology were determined. Pre- and post-operative measurements of tumour size were compared in order to evaluate tumour response. Results The correlation between post-treatment MRI size and pathology was moderate and higher with a correlation coefficient (r) 0.64 compared to the correlation between CE and pathology r = 0.25. Post-treatment MRI and clinical results had a negligible bias towards underestimation of lesion size. Tumour size on MRI and CE had 0.82 cm and 0.52 cm lower mean size than tumour size measured by pathology, respectively. Conclusions The higher correlation between measurements of residual disease obtained on MRI and those obtained with pathology validates the accuracy of imaging assessment during NET. MRI was found to be more accurate for estimating complete responses than clinical assessments and warrants further investigation in larger cohorts to validate this finding. Electronic supplementary material The online version of this article (10.1007/s10549-020-05852-7) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Bahrami N, Chang G, Kanaya N, Sauer T, Park D, Loeng M, Gravdehaug B, Chen S, Geisler J. Changes in serum estrogenic activity during neoadjuvant therapy with letrozole and exemestane. J Steroid Biochem Mol Biol 2020; 200:105641. [PMID: 32151708 DOI: 10.1016/j.jsbmb.2020.105641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/29/2022]
Abstract
The aromatase inhibitors (AIs), letrozole (Femar®/Femara®) and exemestane (Aromasin®), are widely used to treat estrogen receptor (ER) positive breast cancer in postmenopausal patients. In the setting of metastatic breast cancer, these drugs may be used after another causing new responses in selected patients after progressing on the first choice. The precise explanation for this "lack of cross resistance" is still missing. NEOLETEXE is a neoadjuvant, randomized, open-label, cross-over trial. Postmenopausal patients with ER-positive, HER-2 negative, locally advanced breast cancer were enrolled. All patients were randomized to treatment starting with either letrozole or exemestane for at least 2 months followed by another 2 months on the alternative AI. The total estrogenic activities in blood samples were determined using the AroER tri-screen assay developed in the Chen laboratory. Using this highly sensitive assay, estrogenic activity was detected at three time points for all patients. Importantly, a significantly higher total estrogenic activity was found during therapy with exemestane compared to letrozole in 21 out of 26 patients. When letrozole was included in the AroER tri-screen assay, the estrogenic activities in most samples collected during exemestane treatment were further reduced, suggesting that low levels of androgens remained in specimens obtained after exemestane treatment. Our results suggest the AroER tri-screen to be a very sensitive method to estimate the overall estrogen-mediated activity in human samples even during therapy with highly potent aromatase inhibitors. In the present study, serum estrogen activity was significantly higher during exemestane therapy when compared to letrozole therapy.
Collapse
Affiliation(s)
- Nazli Bahrami
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Gregory Chang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Torill Sauer
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway
| | - Daehoon Park
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Marie Loeng
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway
| | - Berit Gravdehaug
- Department of Breast and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital (AHUS), Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus AHUS, Norway.
| |
Collapse
|