1
|
Lang Y, Lin Y, Deng M, Liu X. Economic evaluation of cemiplimab plus chemotherapy regimen for advanced non-small-cell lung cancer. BMC Cancer 2024; 24:236. [PMID: 38383374 PMCID: PMC10880349 DOI: 10.1186/s12885-024-11992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE Cemiplimab, a novel PD-1 inhibitor, exhibits significant antitumor activity against advanced non-small cell lung cancer (NSCLC). However, the cost-effectiveness of this drug for the treatment remains unclear. This study aimed to assess the cost-effectiveness of cemiplimab plus chemotherapy compared to chemotherapy for the treatment of advanced NSCLC, from the perspective of the United States payer. METHODS A partitioned survival approach was developed to project the disease progression of NSCLC. Overall survival (OS) and progression-free survival (PFS) data were obtained from the EMPOWER lung 3 trial and extrapolated to estimate long-term survival outcomes. Direct medical costs and utility data were collected. The primary outcome measure, the incremental cost-utility ratio (ICUR), was used to evaluate the cost-effectiveness of cemiplimab plus chemotherapy regimen. One-way sensitivity analyses (OWSA) and probabilistic sensitivity analyses (PSA) were conducted to assess the robustness of the results. RESULTS In the base-case analysis, the ICUR for cemiplimab plus chemotherapy versus chemotherapy alone was estimated to be $395,593.8 per quality-adjusted life year (QALY). OWSA revealed that the results were sensitive to Hazard ratio value, utility of PFS, and cost of cemiplimab. PSA demonstrated that cemiplimab plus chemotherapy exhibited 0% probability of cost-effectiveness.In hypothetical scenario analysis, the ICUR of two regimens was $188.803.3/QALY. OWSA revealed that the results were sensitive to the discount rate, utility, and cost of cemiplimab. PSA indicated that cemiplimab plus chemotherapy achieved at least an 11.5% probability of cost-effectiveness. CONCLUSION Our cost-effectiveness analysis suggests that, at its current price, cemiplimab plus chemotherapy regimen is unlikely to be a cost-effective option compared with chemotherapy alone for advanced NSCLC patients, based on a threshold of $150,000 per QALY, from the perspective of the US payer.
Collapse
Affiliation(s)
- Yitian Lang
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Lin
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meng Deng
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
3
|
Sholl LM. Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. Mod Pathol 2022; 35:66-74. [PMID: 34608245 DOI: 10.1038/s41379-021-00932-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy, including use of checkpoint inhibitors against PD-1, PD-L1, and CTLA-4, forms the backbone of oncologic management for the majority of non-small cell lung carcinoma patients. However, response to these therapies varies widely, from patients who have complete resolution of metastatic disease and long-term remission, to those who rapidly progress and succumb to their cancer despite use of the newest checkpoint inhibitors. While PD-L1 protein expression by immunohistochemistry serves as the principle predictive biomarker for immunotherapy response, neither the sensitivity nor the specificity of this approach is optimal, and clinical PD-L1 testing is plagued by concerns around result reproducibility and confusion born from the proliferation of different companion diagnostic assays. At the same time, insights into tumor and host immune-specific factors that inform both prognosis and response prediction are beginning to define better immunotherapy biomarkers. Beyond immune checkpoint expression status, common themes in analyses of immunotherapy response prediction include cancer neoantigen production, the state of the antigen presentation pathway in both tumor and antigen presenting cells, the admixture of effector and suppressor immune cells in the tumor microenvironment, and the genomic drivers and comutations that can influence the all of these variables. This review will address the state of PD-L1 testing in lung cancer, the role for tumor mutation burden as a predictive biomarker, the evolving status of human leukocyte antigen/major histocompatibility complex expression as a marker of antigen presentation, approaches to tumor immune cell quantitation including by multiplex immunofluorescence, and the importance of tumor genomic profiling to ascertain oncogenic driver (EGFR, ALK, KRAS, MET, etc.) and co-mutation (STK11, KEAP1, SMARCA4) status.
Collapse
Affiliation(s)
- Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|