1
|
Gaspar N, Hung GY, Strauss SJ, Campbell-Hewson Q, Dela Cruz FS, Glade Bender JL, Koh KN, Whittle SB, Chan GCF, Gerber NU, Palmu S, Morgenstern DA, Longhi A, Baecklund F, Lee JA, Locatelli F, Márquez Vega C, Janeway KA, McCowage G, McCabe MG, Bidadi B, Huang J, McKenzie J, Okpara CE, Bautista F. Lenvatinib Plus Ifosfamide and Etoposide in Children and Young Adults With Relapsed Osteosarcoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol 2024:2824985. [PMID: 39418029 DOI: 10.1001/jamaoncol.2024.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Importance The combination of ifosfamide and etoposide (IE) is commonly used to treat relapsed or refractory osteosarcoma; however, second-line treatment recommendations vary across guidelines. Objective To evaluate whether the addition of lenvatinib to IE (LEN-IE) improves outcomes in children and young adults with relapsed or refractory osteosarcoma. Design, Setting, and Participants The OLIE phase II, open-label, randomized clinical trial was conducted globally across Europe, Asia and the Pacific, and North America. From March 22, 2020, through November 11, 2021, the trial enrolled patients aged 2 to 25 years with high-grade osteosarcoma, measurable or evaluable disease per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1), and 1 to 2 prior lines of systemic treatment. The data analyses were performed between March 22, 2020 (first patient in) and June 22, 2022 (data cutoff for the primary analysis), and September 29, 2023 (end of study final database lock). Interventions The OLIE trial assessed the efficacy and safety of lenvatinib (14 mg/m2 taken orally once daily) combined with up to 5 cycles of ifosfamide (3000 mg/m2 intravenously) and etoposide (100 mg/m2 intravenously) on days 1 to 3 of each cycle vs IE alone at the same doses. Patients randomized to IE could cross over to receive lenvatinib upon disease progression by independent imaging review. Main Outcomes and Measures The primary end point was progression-free survival (PFS) per RECIST 1.1 by independent imaging review. The Kaplan-Meier method was used to estimate the PFS distribution, with a prespecified 1-sided significance threshold of .025 by stratified log-rank test. Secondary end points included PFS rate at 4 months and overall survival. Adverse events were summarized using descriptive statistics. Results A total of 81 patients were enrolled (median [IQR] age, 15.0 [12.0-18.0] years; 46 males [56.8%]), with 40 in the LEN-IE arm and 41 in the IE arm. Median PFS was 6.5 months (95% CI, 5.7-8.2 months) for the LEN-IE arm and 5.5 months (95% CI, 2.9-6.5 months) for the IE arm (hazard ratio [HR], 0.54; 95% CI, 0.27-1.08; 1-sided P = .04). The rate of PFS at 4 months was 76.3% (95% CI, 59.3%-86.9%) in the LEN-IE arm and 66.0% (95% CI, 47.7%-79.2%) in the IE arm. Median overall survival was 11.9 months (95% CI, 10.1 months to not estimable) with LEN-IE and 17.4 months (95% CI, 14.2 months to not estimable) with IE (HR, 1.28; 95% CI, 0.60-2.70; 1-sided nominal P = .75). Grade 3 or higher treatment-related adverse events occurred in 35 of 39 patients (89.7%) in the LEN-IE arm and 31 of 39 patients (79.5%) in the IE arm. Conclusions and Relevance Although LEN-IE did not meet prespecified statistical significance for improved PFS vs IE, this study demonstrates the importance of international collaboration and randomized clinical trials in patients with relapsed or refractory osteosarcoma and may inform future trial design. Trial Registration ClinicalTrials.gov Identifier: NCT04154189.
Collapse
Affiliation(s)
- Nathalie Gaspar
- Department of Oncology for Child and Adolescent, Gustave Roussy Cancer Campus, Villejuif, France
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sandra J Strauss
- London Sarcoma Service, University College London Hospital NHS Trust, London, United Kingdom
| | - Quentin Campbell-Hewson
- The Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Filemon S Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Julia L Glade Bender
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kyung-Nam Koh
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sarah B Whittle
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Nicolas U Gerber
- Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Sauli Palmu
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, Tampere, Finland
| | - Daniel A Morgenstern
- Division of Haematology/Oncology, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Alessandra Longhi
- Chemotherapy Service, Istituto Ortopedico Rizzoli, Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Fredrik Baecklund
- Paediatric Oncology Unit, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jun Ah Lee
- Center for Pediatric Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - Geoffrey McCowage
- Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Martin G McCabe
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Behzad Bidadi
- Clinical Research, Merck & Co Inc, Rahway, New Jersey
| | - Jie Huang
- Biostatistics, Eisai Inc, Nutley, New Jersey
| | - Jodi McKenzie
- Oncology Business Group, Eisai Inc, Nutley, New Jersey
| | | | - Francisco Bautista
- Hospital del Niño Jesús, Madrid, Spain
- Now with Princess Maxima Centrum for Pediatric Cancer, Utrecht, the Netherlands
| |
Collapse
|
2
|
van Ewijk R, Cleirec M, Herold N, le Deley MC, van Eijkelenburg N, Boudou-Rouquette P, Risbourg S, Strauss SJ, Palmerini E, Boye K, Kager L, Hecker-Nolting S, Marchais A, Gaspar N. A systematic review of recent phase-II trials in refractory or recurrent osteosarcoma: Can we inform future trial design? Cancer Treat Rev 2023; 120:102625. [PMID: 37738712 DOI: 10.1016/j.ctrv.2023.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND/OBJECTIVE To analyze changes in recurrent/refractory osteosarcoma phase II trials over time to inform future trials in this population with poor prognosis. METHODS A systematic review of trials registered on trial registries between 01/01/2017-14/02/2022. Comparison of 98 trials identified between 2003 and 2016. Publication search/analysis for both periods, last update on 01/12/2022. RESULTS Between 2017 and 2022, 71 phase-II trials met our selection criteria (19 osteosarcoma-specific trials, 14 solid tumor trials with and 38 trials without an osteosarcoma-specific stratum). The trial number increased over time: 13.9 versus 7 trials/year (p = 0.06). Monotherapy remained the predominant treatment (62% vs. 62%, p = 1). Targeted therapies were increasingly evaluated (66% vs. 41%, P = 0.001). Heterogeneity persisted in the trial characteristics. The inclusion criteria were measurable disease (75%), evaluable disease (14%), and surgical remission (11%). 82% of the trials included pediatric or adolescent patients. Biomarker-driven trials accounted for 25% of the total trials. The survival endpoint use (rather than response) slightly increased (40% versus 31%), but the study H1/H0 hypotheses remained heterogeneous. Single-arm designs predominated over multiarm trials (n = 7). Available efficacy data on 1361 osteosarcoma patients in 58 trials remained disappointing, even though 21% of these trials were considered positive, predominantly those evaluating multi-targeted kinase inhibitors. CONCLUSION Despite observed changes in trial design and an increased number of trials investigating new therapies, high heterogeneity remained with respect to patient selection, study design, primary endpoints, and statistical hypotheses in recently registered phase II trials for osteosarcoma. Continued optimization of trial design informed by a deeper biological understanding should strengthen the development of new therapies.
Collapse
Affiliation(s)
- Roelof van Ewijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Morgane Cleirec
- Department of Pediatric Oncology, CHU Nantes, Nantes, France
| | - Nikolas Herold
- Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden, and Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marie-Cécile le Deley
- Unité de Méthodologie et Biostatistiques, Centre Oscar Lambret, Lille, France; Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, U1018 ONCOSTAT, F-94085 Villejuif, France
| | | | - Pascaline Boudou-Rouquette
- Department of Medical Oncology, Cochin Hospital, Cochin Institute, INSERMU1016, Paris Cancer Institute, CARPEM, AP-HP, Paris, France
| | - Séverine Risbourg
- Unité de Méthodologie et Biostatistiques, Centre Oscar Lambret, Lille, France
| | - Sandra J Strauss
- Department of Oncology, University College London Cancer Institute, London, UK
| | - Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Kjetil Boye
- Department of Oncology, Oslo University Hospital, Norway
| | - Leo Kager
- St. Anna Children's Hospital, Department of Pediatrics, Medical University Vienna, Vienna, Austria; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Antonin Marchais
- Department of Oncology for Child and Adolescents, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif, France; National Institute for Health and Medical Research (INSERM) U1015, BiiOSTeam, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- Department of Oncology for Child and Adolescents, Gustave Roussy Cancer Center, Paris-Saclay University, Villejuif, France; National Institute for Health and Medical Research (INSERM) U1015, BiiOSTeam, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|