1
|
Xu J, Mu S, Wang Y, Yu S, Wang Z. Recent advances in immunotherapy and its combination therapies for advanced melanoma: a review. Front Oncol 2024; 14:1400193. [PMID: 39081713 PMCID: PMC11286497 DOI: 10.3389/fonc.2024.1400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
The incidence of melanoma is increasing year by year and is highly malignant, with a poor prognosis. Its treatment has always attracted much attention. Among the more clinically applied immunotherapies are immune checkpoint inhibitors, bispecific antibodies, cancer vaccines, adoptive cell transfer therapy, and oncolytic virotherapy. With the continuous development of technology and trials, in addition to immune monotherapy, combinations of immunotherapy and radiotherapy have shown surprising efficacy. In this article, we review the research progress of immune monotherapy and combination therapy for advanced melanoma, with the aim of providing new ideas for the treatment strategy for advanced melanoma.
Collapse
Affiliation(s)
- Jiamin Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shukun Mu
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yun Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Suchun Yu
- Department of Pharmacy, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongming Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Salomon N, Helm A, Selmi A, Fournier C, Diken M, Schrörs B, Scholz M, Kreiter S, Durante M, Vascotto F. Carbon Ion and Photon Radiation Therapy Show Enhanced Antitumoral Therapeutic Efficacy With Neoantigen RNA-LPX Vaccines in Preclinical Colon Carcinoma Models. Int J Radiat Oncol Biol Phys 2024; 119:936-945. [PMID: 38163521 DOI: 10.1016/j.ijrobp.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.
Collapse
Affiliation(s)
- Nadja Salomon
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Alexander Helm
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Abderaouf Selmi
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Mustafa Diken
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Schrörs
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Sebastian Kreiter
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marco Durante
- GSI Helmholtzzentrum for Heavy Ion Research GmbH, Darmstadt, Germany; Technical University Darmstadt, Institute of Condensed Matter Physics, Darmstadt, Germany; University Federico II, Department of Physics "Ettore Pancini", Naples, Italy
| | - Fulvia Vascotto
- TRON gGmbH, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Durante M. Kaplan lecture 2023: lymphopenia in particle therapy. Int J Radiat Biol 2024; 100:669-677. [PMID: 38442137 DOI: 10.1080/09553002.2024.2324472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Lymphopenia is now generally recognized as a negative prognostic factor in radiotherapy. Already at the beginning of the century we demonstrated that high-energy carbon ions induce less damage to the lymphocytes of radiotherapy patients than X-rays, even if heavy ions are more effective per unit dose in the induction of chromosomal aberrations in blood cells irradiated ex-vivo. The explanation was based on the volume effect, i.e. the sparing of larger volumes of normal tissue in Bragg peak therapy. Here we will review the current knowledge about the difference in lymphopenia between particle and photon therapy and the consequences. CONCLUSIONS There is nowadays an overwhelming evidence that particle therapy reduces significantly the radiotherapy-induced lymphopenia in several tumor sites. Because lymphopenia turns down the immune response to checkpoint inhibitors, it can be predicted that particle therapy may be the ideal partner for combined radiation and immunotherapy treatment and should be selected for patients where severe lymphopenia is expected after X-rays.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Dipartimento di Fisica "Ettore Pancini", Università Federico II, Naples, Italy
| |
Collapse
|
4
|
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. Int J Mol Sci 2024; 25:2830. [PMID: 38474078 DOI: 10.3390/ijms25052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| |
Collapse
|
5
|
Pezzicoli G, Salonne F, Musci V, Ciciriello F, Tommasi S, Lacalamita R, Zito A, Allegretta SA, Solimando AG, Rizzo M. Concomitant Immunotherapy and Metastasis-Directed Radiotherapy in Upper Tract Urothelial Carcinoma: A Biomarker-Driven, Original, Case-Based Proof-of-Concept Study. J Clin Med 2023; 12:7761. [PMID: 38137830 PMCID: PMC10744017 DOI: 10.3390/jcm12247761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Metastatic upper tract urothelial carcinoma (mUTUC) has a poor prognosis. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in patients with metastatic urothelial carcinoma. However, data supporting the use of ICIs in patients with mUTUC are limited. A promising synergy between ICI and concomitant radiotherapy (RT) has been reported in patients with mUTUC. Our research involved a case-based investigation and emphasized the successful integration of different specialists' skills. Observed after partial urethrectomy procedures for muscle-invasive upper tract urothelial carcinoma (UTUC), the radiological detection of lung metastases prompted us to implement cisplatin-based first-line chemotherapy and molecular characterization in the treatment process. We uncovered alterations in the ERBB2 and FGFR3 genes and mismatch repair deficiency at a molecular level. First-line chemotherapy treatment led to a stable disease, and the patient was started on maintenance immunotherapy with Avelumab. Subsequently, an increase in the size of the lung nodules was described, and the patient received radiotherapy for three lung lesions in combination with immunotherapy. After 3 months, a restaging CT scan reported a complete response, which is still ongoing. We discuss the mechanisms driving RT/ICI synergy and the molecular profile of mUTUC as factors that should be considered in therapeutic strategy planning. Molecular insight enhances the originality of our study, providing a nuanced understanding of the genetic landscape of mUTUC and paving the way for targeted therapeutic strategies. The therapeutic armamentarium expansion encourages the design of a multimodal and personalized approach for each mUTUC patient, taking into account tumor heterogeneity and molecular profiling.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.S.); (V.M.); (F.C.)
| | - Francesco Salonne
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.S.); (V.M.); (F.C.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.S.); (V.M.); (F.C.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.S.); (V.M.); (F.C.)
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (S.T.); (R.L.)
| | - Rosanna Lacalamita
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (S.T.); (R.L.)
| | - Alfredo Zito
- Pathology Department, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Antonio Giovanni Solimando
- Unit of Internal Medicine “Guido Baccelli”, Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale—Policlinico di Bari, 70124 Bari, Italy
| |
Collapse
|
6
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
7
|
Ahern V, Adeberg S, Fossati P, Garrett R, Hoppe B, Mahajan A, Orlandi E, Orecchia R, Prokopovich D, Seuntjens J, Thwaites D, Trifiletti D, Tsang R, Tsuji H. An international approach to estimating the indications and number of eligible patients for carbon ion radiation therapy (CIRT) in Australia. Radiother Oncol 2023; 187:109816. [PMID: 37480996 DOI: 10.1016/j.radonc.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND PURPOSE To establish the treatment indications and potential patient numbers for carbon ion radiation therapy (CIRT) at the proposed national carbon ion (and proton) therapy facility in the Westmead precinct, New South Wales (NSW), Australia. METHODS An expert panel was convened, including representatives of four operational and two proposed international carbon ion facilities, as well as NSW-based CIRT stakeholders. They met virtually to consider CIRT available evidence and experience. Information regarding Japanese CIRT was provided pre- and post- the virtual meeting. Published information for South Korea was included in discussions. RESULTS There was jurisdictional variation in the tumours treated by CIRT due to differing incidences of some tumours, referral patterns, differences in decisions regarding which tumours to prioritise, CIRT resources available and funding arrangements. The greatest level of consensus was reached that CIRT in Australia can be justified currently for patients with adenoid cystic carcinomas and mucosal melanomas of the head and neck, hepatocellular cancer and liver metastases, base of skull meningiomas, chordomas and chondrosarcomas. Almost 1400 Australian patients annually meet the consensus-derived indications now. CONCLUSION A conservative estimate is that 1% of cancer patients in Australia (or 2% of patients recommended for radiation therapy) may preferentially benefit from CIRT for initial therapy of radiation resistant tumours, or to boost persistently active disease after other therapies, or for re-irradiation of recurrent disease. On this basis, one national carbon ion facility with up to four treatment rooms is justified for Australian patients.
Collapse
Affiliation(s)
- Verity Ahern
- Sydney West Radiation Oncology Network, Westmead, Australia; Westmead Clinical School, The University of Sydney, Australia.
| | - Sebastian Adeberg
- Marburg Ion-Beam Therapy Center (MIT), Department of Radiation Oncology, Heidelberg University Hospital, Marburg, Germany; Department of Radiation Oncology, Marburg University Hospital, Marburg, Germany
| | - Piero Fossati
- MedAustron Ion Therapy Center, Austria; Karl Landsteiner University of Health Sciences, Austria
| | - Richard Garrett
- Australian Nuclear Science and Technology Organisation, Australia
| | | | | | - Ester Orlandi
- National Center for Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Jan Seuntjens
- Department of Medical Physics, Princess Margaret Cancer Centre, Toronto, Canada; Radiation Oncology, University of Toronto, Toronto, Canada
| | - David Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Australia; Radiotherapy Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Richard Tsang
- Radiation Oncology, University of Toronto, Toronto, Canada; Department of Radiation Oncology and Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hiroshi Tsuji
- National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
8
|
Ollivier L, Moreau Bachelard C, Renaud E, Dhamelincourt E, Lucia F. The abscopal effect of immune-radiation therapy in recurrent and metastatic cervical cancer: a narrative review. Front Immunol 2023; 14:1201675. [PMID: 37539054 PMCID: PMC10394237 DOI: 10.3389/fimmu.2023.1201675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Despite human papillomavirus vaccination and screening, in about 5% of cases, cervical cancer (CC) is discovered at an initial metastatic stage. Moreover, nearly one-third of patients with locally advanced CC (LACC) will have a recurrence of their disease during follow-up. At the stage of recurrent or metastatic CC, there are very few treatment options. They are considered incurable with a very poor prognosis. For many years, the standard of care was the combination of platinum-based drug and paclitaxel with the possible addition of bevacizumab. The most recent years have seen the development of the use of immune checkpoint inhibitors (ICIs) (pembrolizumab, cemiplimab and others) in patients with CC. They have shown long term responses with improved overall survival of patients in 1st line (in addition to chemotherapy) or 2nd line (as monotherapy) treatment. Another emerging drug is tisotumab vedotin, an antibody-drug conjugate targeting tissue factor. Radiation therapy (RT) often has a limited palliative indication in metastatic cancers. However, it has been observed that RT can induce tumor shrinkage both in distant metastatic tumors beyond the radiation field and in primary irradiated tumors. This is a rarely observed phenomenon, called abscopal effect, which is thought to be related to the immune system and allows a tumor response throughout the body. It would be the activation of the immune system induced by the irradiation of cancer cells that would lead to a specific type of apoptosis, the immunogenic cell death. Today, there is a growing consensus that combining RT with ICIs may boost abscopal response or cure rates for various cancers. Here we will review the potential abscopal effect of immune-radiation therapy in metastatic cervical cancer.
Collapse
Affiliation(s)
- Luc Ollivier
- Department of Radiation Oncology, Institut De Cancérologie De L’Ouest (ICO), Saint-Herblain, France
| | | | - Emmanuelle Renaud
- Department of Medical Oncology, CHRU Morvan, University Hospital, Brest, France
| | | | - Francois Lucia
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|