1
|
Patel SB, Moskop DR, Jordan CT, Pietras EM. Understanding MDS stem cells: Advances and limitations. Semin Hematol 2024:S0037-1963(24)00110-0. [PMID: 39472255 DOI: 10.1053/j.seminhematol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/10/2024]
Abstract
In work spanning several decades, extensive studies have focused on the properties of malignant stem cells that drive the pathogenesis of acute myeloid leukemia (AML). However, relatively little attention has been devoted to several serious myeloid malignancies that occur prior to the onset of frank leukemia, including myelodysplastic syndrome (MDS). Like leukemia, MDS is hypothesized to arise from a pool of immature malignant stem and progenitor cells (MDS-SCs) that serve as a reservoir for disease evolution and progression1. While multiple studies have sought to identify and characterize the biology and vulnerabilities of MDS-SCs, yet translation of scientific concepts to therapeutically impactful regimens has been limited. Here, we evaluate the currently known properties of MDS-SCs as well as the post-transcriptional mechanisms that drive MDS pathogenesis at a stem and progenitor level. We highlight limits and gaps in our characterization and understanding of MDS-SCs and address the extent to which the properties of MDS-SC are (and can be) inferred from the characterization of LSCs.
Collapse
Affiliation(s)
- Sweta B Patel
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO
| | - Daniel R Moskop
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO
| | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO.
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora CO.
| |
Collapse
|
2
|
Stubbins RJ, Cherniawsky H, Karsan A. Cellular and immunotherapies for myelodysplastic syndromes. Semin Hematol 2024:S0037-1963(24)00109-4. [PMID: 39426936 DOI: 10.1053/j.seminhematol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
In this review article, we outline the current landscape of immune and cell therapy-based approaches for patients with myelodysplastic syndromes (MDS). Given the well characterized graft-versus-leukemia (GVL) effect observed with allogeneic hematopoietic cell transplantation, and the known immune escape mechanisms observed in MDS cells, significant interest exists in developing immune-based approaches to treat MDS. These attempts have included antibody-based drugs that block immune escape molecules, such as inhibitors of the PD-1/PD-L1 and TIM-3/galectin-9 axes that mediate interactions between MDS cells and T-lymphocytes, as well as antibodies that block the CD47/SIRPα interaction, which mediates macrophage phagocytosis. Unfortunately, these approaches have been largely unsuccessful. There is significant potential for T-cell engaging therapies and chimeric antigen receptor T (CAR-T) cells, but there are also several limitations to these approaches that are unique to MDS. However, many of these limitations may be overcome by the next generation of cellular therapies, including those with engineered T-cell receptors or natural killer (NK)-cell based platforms. Regardless of the approach, all these immune cells are subject to the complex bone marrow microenvironment in MDS, which harbours a variable and heterogeneous mix of pro-inflammatory cytokines and immunosuppressive elements. Understanding this interaction will be paramount to ensuring the success of immune and cellular therapies in MDS.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada.
| | - Hannah Cherniawsky
- Leukemia/BMT Program of BC, BC Cancer, Vancouver V5Z 1M9, BC, Canada; Division of Hematology, Department of Medicine, University of British Columbia, Vancouver V5Z 1M9, BC, Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
3
|
Hochman MJ, DeZern AE. SOHO State of the Art Updates and Next Questions: An Update on Higher Risk Myelodysplastic Syndromes. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:573-582. [PMID: 38594129 DOI: 10.1016/j.clml.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Higher-risk myelodysplastic syndromes (HR-MDS) are clonal myeloid neoplasms that cause life-limiting complications from severe cytopenias and leukemic transformation. Efforts to better classify, prognosticate, and assess therapeutic responses in HR-MDS have resulted in publication of new clinical tools in the last several years. Given limited current treatment options and suboptimal outcomes, HR-MDS stands to benefit from the study of investigational agents.Higher-risk myelodysplastic syndromes (HR-MDS) are a heterogenous group of clonal myeloid-lineage malignancies often characterized by high-risk genetic lesions, increased blood transfusion needs, constitutional symptoms, elevated risk of progression to acute myeloid leukemia (AML), and therapeutic need for allogeneic bone marrow transplantation. Use of blast percentage and other morphologic features to define myelodysplastic neoplasm subtypes is rapidly shifting to incorporate genetics, resulting in a subset of former HR-MDS patients now being considered as AML in presence of leukemia-defining genetic alterations. A proliferation of prognostic tools has further focused use of genetic features to drive decision making in clinical management. Recently, criteria to assess response of HR-MDS to therapy were revised to incorporate more clinically meaningful endpoints and better match AML response criteria. Basic science investigations have resulted in improved understanding of the relationship between MDS genetic lesions, bone marrow stromal changes, germline predispositions, and disease phenotype. However, therapeutic advances have been more limited. There has been import of the IDH1 inhibitor ivosidenib, initially approved for AML; the Bcl-2 inhibitor venetoclax and liposomal daunorubicin/cytarabine (CPX-351) are under active investigation as well. Unfortunately, effective treatment of TP53-mutated disease remains elusive, though preliminary evidence suggests improved outcomes with oral decitabine/cedazuridine over parenteral hypomethylating agent monotherapy. Investigational agents with novel mechanisms of action may help expand the repertoire of treatment options for HR-MDS and trials continue to offer a hopeful therapeutic avenue for suitable patients.
Collapse
Affiliation(s)
- Michael J Hochman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Amy E DeZern
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
4
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
5
|
Giuliano A, Pimentel PAB, Horta RS. Checkpoint Inhibitors in Dogs: Are We There Yet? Cancers (Basel) 2024; 16:2003. [PMID: 38893123 PMCID: PMC11171034 DOI: 10.3390/cancers16112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have revolutionised cancer treatment in people. Immune checkpoints are important regulators of the body's reaction to immunological stimuli. The most studied immune checkpoint molecules are programmed death (PD-1) with its ligand (PD-L1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) with its ligands CD80 (B7-1) and CD86 (B7-2). Certain tumours can evade immunosurveillance by activating these immunological checkpoint targets. These proteins are often upregulated in cancer cells and tumour-infiltrating lymphocytes, allowing cancer cells to evade immune surveillance and promote tumour growth. By blocking inhibitory checkpoints, ICI can help restore the immune system to effectively fight cancer. Several studies have investigated the expression of these and other immune checkpoints in human cancers and have shown their potential as therapeutic targets. In recent years, there has been growing interest in studying the expression of immune checkpoints in dogs with cancer, and a few small clinical trials with ICI have already been performed on these species. Emerging studies in veterinary oncology are centred around developing and validating canine-targeted antibodies. Among ICIs, anti-PD-1 and anti-PD-L1 treatments stand out as the most promising, mirroring the success in human medicine over the past decade. Nevertheless, the efficacy of caninized antibodies remains suboptimal, especially for canine oral melanoma. To enhance the utilisation of ICIs, the identification of predictive biomarkers for treatment response and the thorough screening of individual tumours are crucial. Such endeavours hold promise for advancing personalised medicine within veterinary practice, thereby improving treatment outcomes. This article aims to review the current research literature about the expression of immune checkpoints in canine cancer and the current results of ICI treatment in dogs.
Collapse
Affiliation(s)
- Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
- Veterinary Medical Centre, City University of Hong Kong, Hong Kong, China
| | - Pedro A. B. Pimentel
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo S. Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
6
|
Fu C, Wang J, Ma T, Yin C, Zhou L, Clausen BE, Mi QS, Jiang A. β-Catenin in Dendritic Cells Negatively Regulates CD8 T Cell Immune Responses through the Immune Checkpoint Molecule Tim-3. Vaccines (Basel) 2024; 12:460. [PMID: 38793711 PMCID: PMC11125945 DOI: 10.3390/vaccines12050460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies have demonstrated that β-catenin in dendritic cells (DCs) serves as a key mediator in promoting both CD4 and CD8 T cell tolerance, although the mechanisms underlying how β-catenin exerts its functions remain incompletely understood. Here, we report that activation of β-catenin leads to the up-regulation of inhibitory molecule T-cell immunoglobulin and mucin domain 3 (Tim-3) in type 1 conventional DCs (cDC1s). Using a cDC1-targeted vaccine model with anti-DEC-205 engineered to express the melanoma antigen human gp100 (anti-DEC-205-hgp100), we demonstrated that CD11c-β-cateninactive mice exhibited impaired cross-priming and memory responses of gp100-specific CD8 T (Pmel-1) cells upon immunization with anti-DEC-205-hgp100. Single-cell RNA sequencing (scRNA-seq) analysis revealed that β-catenin in DCs negatively regulated transcription programs for effector function and proliferation of primed Pmel-1 cells, correlating with suppressed CD8 T cell immunity in CD11c-β-cateninactive mice. Further experiments showed that treating CD11c-β-cateninactive mice with an anti-Tim-3 antibody upon anti-DEC-205-hgp100 vaccination led to restored cross-priming and memory responses of gp100-specific CD8 T cells, suggesting that anti-Tim-3 treatment likely synergizes with DC vaccines to improve their efficacy. Indeed, treating B16F10-bearing mice with DC vaccines using anti-DEC-205-hgp100 in combination with anti-Tim-3 treatment resulted in significantly reduced tumor growth compared with treatment with the DC vaccine alone. Taken together, we identified the β-catenin/Tim-3 axis as a potentially novel mechanism to inhibit anti-tumor CD8 T cell immunity and that combination immunotherapy of a DC-targeted vaccine with anti-Tim-3 treatment leads to improved anti-tumor efficacy.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jie Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA;
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany;
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (C.F.); (J.W.); (C.Y.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Rodriguez-Sevilla JJ, Colla S. T-cell dysfunctions in myelodysplastic syndromes. Blood 2024; 143:1329-1343. [PMID: 38237139 DOI: 10.1182/blood.2023023166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell- and antibody-based adoptive therapies that hold promise to improve the outcome of patients with MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
8
|
Karel D, Valburg C, Woddor N, Nava VE, Aggarwal A. Myelodysplastic Neoplasms (MDS): The Current and Future Treatment Landscape. Curr Oncol 2024; 31:1971-1993. [PMID: 38668051 PMCID: PMC11049094 DOI: 10.3390/curroncol31040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) are a heterogenous clonal disorder of hemopoietic stem cells characterized by cytomorphologic dysplasia, ineffective hematopoiesis, peripheral cytopenias and risk of progression to acute myeloid leukemia (AML). Our understanding of this disease has continued to evolve over the last century. More recently, prognostication and treatment have been determined by cytogenetic and molecular data. Specific genetic abnormalities, such as deletion of the long arm of chromosome 5 (del(5q)), TP53 inactivation and SF3B1 mutation, are increasingly associated with disease phenotype and outcome, as reflected in the recently updated fifth edition of the World Health Organization Classification of Hematolymphoid Tumors (WHO5) and the International Consensus Classification 2022 (ICC 2022) classification systems. Treatment of lower-risk MDS is primarily symptom directed to ameliorate cytopenias. Higher-risk disease warrants disease-directed therapy at diagnosis; however, the only possible cure is an allogenic bone marrow transplant. Novel treatments aimed at rational molecular and cellular pathway targets have yielded a number of candidate drugs over recent years; however few new approvals have been granted. With ongoing research, we hope to increasingly offer our MDS patients tailored therapeutic approaches, ultimately decreasing morbidity and mortality.
Collapse
Affiliation(s)
- Daniel Karel
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
| | - Claire Valburg
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
| | - Navitha Woddor
- Department of Pathology, The George Washington University, Washington, DC 20037, USA; (N.W.); (V.E.N.)
| | - Victor E. Nava
- Department of Pathology, The George Washington University, Washington, DC 20037, USA; (N.W.); (V.E.N.)
- Department of Pathology, Washington DC VA Medical Center, Washington, DC 20422, USA
| | - Anita Aggarwal
- Department of Hematology/Medical Oncology, The George Washington University, Washington, DC 20037, USA; (C.V.); (A.A.)
- Department of Hematology/Medical Oncology, Washington DC VA Medical Center, Washington, DC 20422, USA
| |
Collapse
|
9
|
Zeidan AM, Ando K, Rauzy O, Turgut M, Wang MC, Cairoli R, Hou HA, Kwong YL, Arnan M, Meers S, Pullarkat V, Santini V, Malek K, Kiertsman F, Niolat J, Ramos PM, Menssen HD, Fenaux P, Miyazaki Y, Platzbecker U. Sabatolimab plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes (STIMULUS-MDS1): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Haematol 2024; 11:e38-e50. [PMID: 38065203 DOI: 10.1016/s2352-3026(23)00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Sabatolimab is an immunotherapy targeting T-cell immunoglobulin domain and mucin domain-3 (TIM-3), an immuno-myeloid regulator expressed on immune cells and leukaemic stem cells. In this trial, we compared the efficacy and safety of sabatolimab plus hypomethylating agent with placebo plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes. METHODS STIMULUS-MDS1 was a multicentre, randomised, double-blind, placebo-controlled, phase 2 study done at 54 investigational sites in 17 countries. Adult patients (aged ≥18 years) with intermediate-risk, high-risk, and very high-risk myelodysplastic syndromes (according to Revised International Prognostic Scoring System criteria) who had not received previous treatment were included. Patients were randomly assigned (1:1) to intravenous sabatolimab (400 mg on day 8 and 22) or placebo plus a hypomethylating agent (intravenous decitabine 20 mg/m2 on day 1-5 or intravenous or subcutaneous azacitidine 75 mg/m2 on day 1-7 or day 1-5 and day 8 and 9) every 28 days until treatment discontinuation. The two primary endpoints were complete response rate and progression-free survival, assessed in the full analysis set, which included all randomly assigned patients. Complete response was analysed, as prespecified, 7 months after the last patient was randomly assigned. All other analyses presented, including progression-free survival, were done at the final data cutoff prespecified via a protocol amendment on Sept 2, 2021. Safety was assessed in in all patients who received at least one dose of study treatment. This study is registered with ClinicalTrials.gov, NCT03946670, and is ongoing. FINDINGS Between July 29, 2019, and Aug 10, 2020, 127 patients were randomly assigned to sabatolimab plus a hypomethylating agent group (sabatolimab group; n=65) or placebo plus a hypomethylating agent (placebo group; n=62). The median age of participants was 73 years (IQR 69-77), of whom 86 (68%) of 127 patients were male and 77 (61%) were White. The primary endpoints were not met. Complete response (cutoff date of March 10, 2021) was achieved in 14 (22%; 95% CI 12·3-33·5) of 65 patients in the sabatolimab group vs 11 (18%; 9·2-29·5) of 62 patients in the placebo group (p=0·77). At the cutoff date of the final analysis (March 1, 2022), median follow-up for progression-free survival was 17·8 months (IQR 16·6-19·4) in the sabatolimab group and 19·2 months (17·7-22·3) in the placebo group, and the median progression-free survival was 11·1 months (95% CI 7·6-17·6) in the sabatolimab group vs 8·5 months (6·9-11·3) in the placebo group (hazard ratio 0·75 [95% CI 0·48-1·17]; p=0·1022). The most common adverse events of any grade were neutropenia (35 [56%] of 62 patients in the sabatolimab group vs 43 [68%] of 63 patients in the placebo group), thrombocytopenia (30 [48%] vs 32 [51%]), constipation (29 [47%] vs 24 [38%]), diarrhoea (27 [44%] vs 14 [22%]), anaemia (22 [35%] vs 34 [54%]), febrile neutropenia (22 [35%] vs 15 [24%]), and leukopenia (15 [24%] vs 20 [32%]). One patient developed a serious potential treatment-related immune-mediated adverse event in the sabatolimab group. There was one treatment-related death in the sabatolimab group due to pneumonitis. INTERPRETATION The addition of sabatolimab to hypomethylating agents in this study did not result in a significant improvement in complete response rates or progression-free survival. Sabatolimab had a manageable safety in most patients with higher-risk myelodysplastic syndromes. A randomised phase 3 trial is ongoing to assess the potential benefit of sabatolimab plus azacitidine on overall survival in this setting. FUNDING Novartis Pharmaceuticals.
Collapse
Affiliation(s)
- Amer M Zeidan
- Yale Cancer Center, Yale University, New Haven, CT, USA.
| | - Kiyoshi Ando
- Tokai University School of Medicine, Isehara, Japan
| | - Odile Rauzy
- Institut Universitaire du Cancer Toulouse Oncopole, Toulouse University Hospital, Toulouse, France
| | | | - Ming-Chung Wang
- Kaohsiung-Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Roberto Cairoli
- ASST Niguarda Hospital, Milan, Italy; Università degli Studi di Milano Bicocca, Milan, Italy
| | - Hsin-An Hou
- National Taiwan University Hospital, Taipei, Taiwan
| | - Yok-Lam Kwong
- University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Montserrat Arnan
- Institut Català d'Oncologia-Hospital Duran i Reynals, IDIBELL, Hospitalet Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | - Pierre Fenaux
- Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | | | | |
Collapse
|
10
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
11
|
Sauerer T, Velázquez GF, Schmid C. Relapse of acute myeloid leukemia after allogeneic stem cell transplantation: immune escape mechanisms and current implications for therapy. Mol Cancer 2023; 22:180. [PMID: 37951964 PMCID: PMC10640763 DOI: 10.1186/s12943-023-01889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the expansion of immature myeloid cells in the bone marrow (BM) and peripheral blood (PB) resulting in failure of normal hematopoiesis and life-threating cytopenia. Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an established therapy with curative potential. Nevertheless, post-transplant relapse is common and associated with poor prognosis, representing the major cause of death after allo-HCT. The occurrence of relapse after initially successful allo-HCT indicates that the donor immune system is first able to control the leukemia, which at a later stage develops evasion strategies to escape from immune surveillance. In this review we first provide a comprehensive overview of current knowledge regarding immune escape in AML after allo-HCT, including dysregulated HLA, alterations in immune checkpoints and changes leading to an immunosuppressive tumor microenvironment. In the second part, we draw the line from bench to bedside and elucidate to what extend immune escape mechanisms of relapsed AML are yet exploited in treatment strategies. Finally, we give an outlook how new emerging technologies could help to improve the therapy for these patients, and elucidate potential new treatment options.
Collapse
Affiliation(s)
- Tatjana Sauerer
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Giuliano Filippini Velázquez
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany
| | - Christoph Schmid
- Department of Hematology and Oncology, Augsburg University Hospital and Medical Faculty, Bavarian Cancer Research Center (BZKF) and Comprehensive Cancer Center Augsburg, Augsburg, Germany.
| |
Collapse
|
12
|
Tsumura A, Levis D, Tuscano JM. Checkpoint inhibition in hematologic malignancies. Front Oncol 2023; 13:1288172. [PMID: 37920162 PMCID: PMC10619902 DOI: 10.3389/fonc.2023.1288172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
Checkpoint inhibitor therapy has emerged as an effective therapeutic strategy for many types of malignancies, especially in solid tumors. Within the last two decades, numerous monoclonal antibody drugs targeting the CTLA-4 and PD-1/PD-L1 checkpoint pathways have seen FDA approval. Within hematologic malignancies, Hodgkin Lymphoma has seen the greatest clinical benefits thus far with more recent data showing efficacy in the front-line setting. As our understanding of checkpoint inhibition expands, using these pathways as a therapeutic target has shown some utility in the treatment of other hematologic malignancies as well, primarily in the relapsed/refractory settings. Checkpoint inhibition also appears to have a role as a synergistic agent to augment clinical responses to other forms of therapy such as hematopoietic stem cell transplant. Moreover, alternative checkpoint molecules that bypass the well-studied CTLA-4 and PD-1/PD-L1 pathways have emerged as exciting new therapeutic targets. Most excitingly is the use of anti-CD47 blockade in the treatment of high risk MDS and TP-53 mutated AML. Overall, there has been tremendous progress in understanding the benefits of checkpoint inhibition in hematologic malignancies, but further studies are needed in all areas to best utilize these agents. This is a review of the most recent developments and progress in Immune Checkpoint Inhibition in Hematologic Malignancies in the last decade.
Collapse
Affiliation(s)
- Aaron Tsumura
- Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Sacramento, CA, United States
| | - Daniel Levis
- School of Medicine, University of California Davis, Sacramento, CA, United States
| | - Joseph M. Tuscano
- Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Sacramento, CA, United States
- School of Medicine, University of California Davis, Sacramento, CA, United States
| |
Collapse
|
13
|
Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol 2023; 16:101. [PMID: 37670328 PMCID: PMC10478462 DOI: 10.1186/s13045-023-01499-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
In one decade, immunotherapy based on immune checkpoint blockades (ICBs) has become a new pillar of cancer treatment following surgery, radiation, chemotherapy, and targeted therapies. However, not all cancer patients benefit from single or combination therapy with anti-CTLA-4 and anti-PD-1/PD-L1 monoclonal antibodies. Thus, an increasing number of immune checkpoint proteins (ICPs) have been screened and their effectiveness evaluated in preclinical and clinical trials. Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain-containing-3 (TIM-3), and T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) constitute the second wave of immunotherapy targets that show great promise for use in the treatment of solid tumors and leukemia. To promote the research and clinical application of ICBs directed at these targets, we summarize their discovery, immunotherapy mechanism, preclinical efficiency, and clinical trial results in this review.
Collapse
Affiliation(s)
- Letong Cai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuchen Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|