1
|
Wanika L, Egan JR, Swaminathan N, Duran-Villalobos CA, Branke J, Goldrick S, Chappell M. Structural and practical identifiability analysis in bioengineering: a beginner's guide. J Biol Eng 2024; 18:20. [PMID: 38438947 PMCID: PMC11465550 DOI: 10.1186/s13036-024-00410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Advancements in digital technology have brought modelling to the forefront in many disciplines from healthcare to architecture. Mathematical models, often represented using parametrised sets of ordinary differential equations, can be used to characterise different processes. To infer possible estimates for the unknown parameters, these models are usually calibrated using associated experimental data. Structural and practical identifiability analyses are a key component that should be assessed prior to parameter estimation. This is because identifiability analyses can provide insights as to whether or not a parameter can take on single, multiple, or even infinitely or countably many values which will ultimately have an impact on the reliability of the parameter estimates. Also, identifiability analyses can help to determine whether the data collected are sufficient or of good enough quality to truly estimate the parameters or if more data or even reparameterization of the model is necessary to proceed with the parameter estimation process. Thus, such analyses also provide an important role in terms of model design (structural identifiability analysis) and the collection of experimental data (practical identifiability analysis). Despite the popularity of using data to estimate the values of unknown parameters, structural and practical identifiability analyses of these models are often overlooked. Possible reasons for non-consideration of application of such analyses may be lack of awareness, accessibility, and usability issues, especially for more complicated models and methods of analysis. The aim of this study is to introduce and perform both structural and practical identifiability analyses in an accessible and informative manner via application to well established and commonly accepted bioengineering models. This will help to improve awareness of the importance of this stage of the modelling process and provide bioengineering researchers with an understanding of how to utilise the insights gained from such analyses in future model development.
Collapse
Affiliation(s)
- Linda Wanika
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Joseph R Egan
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Nivedhitha Swaminathan
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Carlos A Duran-Villalobos
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, United Kingdom
| | - Juergen Branke
- Warwick Business School, University of Warwick, Coventry, United Kingdom
| | - Stephen Goldrick
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Mike Chappell
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
2
|
Creemers JHA, Ankan A, Roes KCB, Schröder G, Mehra N, Figdor CG, de Vries IJM, Textor J. In silico cancer immunotherapy trials uncover the consequences of therapy-specific response patterns for clinical trial design and outcome. Nat Commun 2023; 14:2348. [PMID: 37095077 PMCID: PMC10125995 DOI: 10.1038/s41467-023-37933-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Late-stage cancer immunotherapy trials often lead to unusual survival curve shapes, like delayed curve separation or a plateauing curve in the treatment arm. It is critical for trial success to anticipate such effects in advance and adjust the design accordingly. Here, we use in silico cancer immunotherapy trials - simulated trials based on three different mathematical models - to assemble virtual patient cohorts undergoing late-stage immunotherapy, chemotherapy, or combination therapies. We find that all three simulation models predict the distinctive survival curve shapes commonly associated with immunotherapies. Considering four aspects of clinical trial design - sample size, endpoint, randomization rate, and interim analyses - we demonstrate how, by simulating various possible scenarios, the robustness of trial design choices can be scrutinized, and possible pitfalls can be identified in advance. We provide readily usable, web-based implementations of our three trial simulation models to facilitate their use by biomedical researchers, doctors, and trialists.
Collapse
Affiliation(s)
- Jeroen H A Creemers
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Ankur Ankan
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Kit C B Roes
- Department of Health Evidence, Section Biostatistics, Radboud university medical center, Nijmegen, The Netherlands
| | - Gijs Schröder
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes Textor
- Medical BioSciences, Radboud university medical center, Nijmegen, The Netherlands.
- Data Science group, Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
In silico trials for treatment of acute ischemic stroke: Design and implementation. Comput Biol Med 2021; 137:104802. [PMID: 34520989 DOI: 10.1016/j.compbiomed.2021.104802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
An in silico trial simulates a disease and its corresponding therapies on a cohort of virtual patients to support the development and evaluation of medical devices, drugs, and treatment. In silico trials have the potential to refine, reduce cost, and partially replace current in vivo studies, namely clinical trials and animal testing. We present the design and implementation of an in silico trial for treatment of acute ischemic stroke. We propose an event-based modelling approach for the simulation of a disease and injury, where changes to the state of the system (the events) are assumed to be instantaneous. Using this approach we are able to combine a diverse set of models, spanning multiple time scales, to model acute ischemic stroke, treatment, and resulting brain tissue injury. The in silico trial is designed to be modular to aid development and reproducibility. It provides a comprehensive framework for application to any potential in silico trial. A statistical population model is used to generate cohorts of virtual patients. Patient functional outcomes are also predicted with a statistical model, using treatment and injury results and the patient's clinical parameters. We demonstrate the functionality of the event-based modelling approach and trial framework by running proof of concept in silico trials. The proof of concept trials simulate the same cohort of patients twice: once with successful treatment (successful recanalisation) and once with unsuccessful treatment (unsuccessful treatment). Ways to overcome some of the challenges and difficulties in setting up such an in silico trial are discussed, such as validation and computational limitations.
Collapse
|
4
|
Jenner AL, Cassidy T, Belaid K, Bourgeois-Daigneault MC, Craig M. In silico trials predict that combination strategies for enhancing vesicular stomatitis oncolytic virus are determined by tumor aggressivity. J Immunother Cancer 2021; 9:jitc-2020-001387. [PMID: 33608375 PMCID: PMC7898884 DOI: 10.1136/jitc-2020-001387] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Immunotherapies, driven by immune-mediated antitumorigenicity, offer the potential for significant improvements to the treatment of multiple cancer types. Identifying therapeutic strategies that bolster antitumor immunity while limiting immune suppression is critical to selecting treatment combinations and schedules that offer durable therapeutic benefits. Combination oncolytic virus (OV) therapy, wherein complementary OVs are administered in succession, offer such promise, yet their translation from preclinical studies to clinical implementation is a major challenge. Overcoming this obstacle requires answering fundamental questions about how to effectively design and tailor schedules to provide the most benefit to patients. Methods We developed a computational biology model of combined oncolytic vaccinia (an enhancer virus) and vesicular stomatitis virus (VSV) calibrated to and validated against multiple data sources. We then optimized protocols in a cohort of heterogeneous virtual individuals by leveraging this model and our previously established in silico clinical trial platform. Results Enhancer multiplicity was shown to have little to no impact on the average response to therapy. However, the duration of the VSV injection lag was found to be determinant for survival outcomes. Importantly, through treatment individualization, we found that optimal combination schedules are closely linked to tumor aggressivity. We predicted that patients with aggressively growing tumors required a single enhancer followed by a VSV injection 1 day later, whereas a small subset of patients with the slowest growing tumors needed multiple enhancers followed by a longer VSV delay of 15 days, suggesting that intrinsic tumor growth rates could inform the segregation of patients into clinical trials and ultimately determine patient survival. These results were validated in entirely new cohorts of virtual individuals with aggressive or non-aggressive subtypes. Conclusions Based on our results, improved therapeutic schedules for combinations with enhancer OVs can be studied and implemented. Our results further underline the impact of interdisciplinary approaches to preclinical planning and the importance of computational approaches to drug discovery and development.
Collapse
Affiliation(s)
- Adrianne L Jenner
- Sainte-Justine University Hospital Research Centre, Montreal, Quebec, Canada.,Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| | - Tyler Cassidy
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada.,Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Katia Belaid
- Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada.,Statistique et Informatique Décisionnelle, Université Toulouse III Paul Sabatier, Toulouse, Occitanie, France
| | - Marie-Claude Bourgeois-Daigneault
- Institut du Cancer de Montréal, CHUM, Montreal, Quebec, Canada.,Department of Microbiology, Infectious diseases and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montreal, Quebec, Canada .,Department of Mathematics and Statistics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Agur Z, Elishmereni M, Foryś U, Kogan Y. Accelerating the Development of Personalized Cancer Immunotherapy by Integrating Molecular Patients' Profiles with Dynamic Mathematical Models. Clin Pharmacol Ther 2020; 108:515-527. [PMID: 32535891 DOI: 10.1002/cpt.1942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023]
Abstract
We review the evolution, achievements, and limitations of the current paradigm shift in medicine, from the "one-size-fits-all" model to "Precision Medicine." Precision, or personalized, medicine-tailoring the medical treatment to the personal characteristics of each patient-engages advanced statistical methods to evaluate the relationships between static patient profiling (e.g., genomic and proteomic), and a simple clinically motivated output (e.g., yes/no responder). Today, precision medicine technologies that have facilitated groundbreaking advances in oncology, notably in cancer immunotherapy, are approaching the limits of their potential, mainly due to the scarcity of methods for integrating genomic, proteomic and clinical patient information. A different approach to treatment personalization involves methodologies focusing on the dynamic interactions in the patient-disease-drug system, as portrayed in mathematical modeling. Achievements of this scientific approach, in the form of algorithms for predicting personal disease dynamics in individual patients under immunotherapeutic drugs, are reviewed as well. The contribution of the dynamic approaches to precision medicine is limited, at present, due to insufficient applicability and validation. Yet, the time is ripe for amalgamating together these two approaches, for maximizing their joint potential to personalize and improve cancer immunotherapy. We suggest the roadmap toward achieving this goal, technologically, and urge clinicians, pharmacologists, and computational biologists to join forces along the pharmaco-clinical track of this development.
Collapse
Affiliation(s)
- Zvia Agur
- Institute for Medical Biomathematics (IMBM), Bene Ataroth, Israel
| | | | - Urszula Foryś
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Yuri Kogan
- Institute for Medical Biomathematics (IMBM), Bene Ataroth, Israel
| |
Collapse
|
6
|
Personal response to immune checkpoint inhibitors of patients with advanced melanoma explained by a computational model of cellular immunity, tumor growth, and drug. PLoS One 2019; 14:e0226869. [PMID: 31877168 PMCID: PMC6932803 DOI: 10.1371/journal.pone.0226869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint inhibitors, such as pembrolizumab, are transforming clinical oncology. Yet, insufficient overall response rate, and accelerated tumor growth rate in some patients, highlight the need for identifying potential responders. To construct a computational model, identifying response predictors, and enabling immunotherapy personalization. The combined dynamics of cellular immunity, pembrolizumab, and the melanoma cancer were modeled by a set of ordinary differential equations. The model relies on a scheme of T memory stem cells, progressively differentiating into effector CD8+ T cells, and additionally includes T cell exhaustion, reinvigoration and senescence. Clinical data of a pembrolizumab-treated patient with advanced melanoma (Patient O’) were used for model calibration and simulations. Virtual patient populations, varying in one parameter or more, were generated for retrieving clinical studies. Simulations captured the major features of Patient O’s disease, displaying a good fit to her clinical data. A temporary increase in tumor burden, as implied by the clinical data, was obtained only when assuming aberrant self-renewal rates. Variation in effector T cell cytotoxicity was sufficient for simulating dynamics that vary from rapid progression to complete cure, while variation in tumor immunogenicity has a delayed and limited effect on response. Simulations of a-specific clinical trial were in good agreement with the clinical results, demonstrating positive correlations between response to pembrolizumab and the ratio of reinvigoration to baseline tumor load. These results were obtained by assuming inter-patient variation in the toxicity of effector CD8+ T cells, and in their intrinsic division rate, as well as by assuming that the intrinsic division rate of cancer cells is correlated with the baseline tumor burden. In conclusion, hyperprogression can result from lower patient-specific effector cytotoxicity, a temporary increase in tumor load is unlikely to result from real tumor growth, and the ratio of reinvigoration to tumor load can predict personal response to pembrolizumab. Upon further validation, the model can serve for immunotherapy personalization.
Collapse
|
7
|
Cassidy T, Craig M. Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization. PLoS Comput Biol 2019; 15:e1007495. [PMID: 31774808 PMCID: PMC6880985 DOI: 10.1371/journal.pcbi.1007495] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022] Open
Abstract
Oncolytic virotherapies, including the modified herpes simplex virus talimogene laherparepvec (T-VEC), have shown great promise as potent instigators of anti-tumour immune effects. The OPTiM trial, in particular, demonstrated the superior anti-cancer effects of T-VEC as compared to systemic immunotherapy treatment using exogenous administration of granulocyte-macrophage colony-stimulating factor (GM-CSF). Theoretically, a combined approach leveraging exogenous cytokine immunotherapy and oncolytic virotherapy would elicit an even greater immune response and improve patient outcomes. However, regimen scheduling of combination immunostimulation and T-VEC therapy has yet to be established. Here, we calibrate a computational biology model of sensitive and resistant tumour cells and immune interactions for implementation into an in silico clinical trial to test and individualize combination immuno- and virotherapy. By personalizing and optimizing combination oncolytic virotherapy and immunostimulatory therapy, we show improved simulated patient outcomes for individuals with late-stage melanoma. More crucially, through evaluation of individualized regimens, we identified determinants of combination GM-CSF and T-VEC therapy that can be translated into clinically-actionable dosing strategies without further personalization. Our results serve as a proof-of-concept for interdisciplinary approaches to determining combination therapy, and suggest promising avenues of investigation towards tailored combination immunotherapy/oncolytic virotherapy. The advent of biological therapies for anti-cancer treatment has had a significant impact on patient outcomes. Targeted xenobiotics, including oncolytic viruses, in combination with existing, more general, immunotherapies like exogenous cytokines show great promise for continuing to improve cancer care. However, determining optimal combination regimens can be difficult, given that testing proposed schedules would require large cohorts of patients enrolled in clinical trials. Fortunately, computational biology can help to address treatment scheduling while simultaneously helping to unravel the mechanisms driving therapeutic responses. In this work, we integrate a mathematical model of GM-CSF and talimogene laherparepvec (T-VEC) oncolytic virotherapy into a virtual clinical trial to optimize their administration in combination. Using this platform, we inferred a clinically-actionable combination schedule for patients with late-stage melanoma that significantly improved virtual patient outcome when compared to GM-CSF and T-VEC monotherapies, and a standard combination strategy. Our results outline a rational approach to therapy optimization with meaningful consequences for how we effectively design and implement clinical trials to maximize their success, and how we treat melanoma with combined immuno- and virotherapy.
Collapse
Affiliation(s)
- Tyler Cassidy
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - Morgan Craig
- Département de mathématiques et de statistique, Université de Montréal, Montreal, Quebec, Canada.,Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Gal J, Milano G, Ferrero JM, Saâda-Bouzid E, Viotti J, Chabaud S, Gougis P, Le Tourneau C, Schiappa R, Paquet A, Chamorey E. Optimizing drug development in oncology by clinical trial simulation: Why and how? Brief Bioinform 2019; 19:1203-1217. [PMID: 28575140 DOI: 10.1093/bib/bbx055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
In therapeutic research, the safety and efficacy of pharmaceutical products are necessarily tested on humans via clinical trials after an extensive and expensive preclinical development period. Methodologies such as computer modeling and clinical trial simulation (CTS) might represent a valuable option to reduce animal and human assays. The relevance of these methods is well recognized in pharmacokinetics and pharmacodynamics from the preclinical phase to postmarketing. However, they are barely used and are poorly regarded for drug approval, despite Food and Drug Administration and European Medicines Agency recommendations. The generalization of CTS could be greatly facilitated by the availability of software for modeling biological systems, by clinical trial studies and hospital databases. Data sharing and data merging raise legal, policy and technical issues that will need to be addressed. Development of future molecules will have to use CTS for faster development and thus enable better patient management. Drug activity modeling coupled with disease modeling, optimal use of medical data and increased computing speed should allow this leap forward. The realization of CTS requires not only bioinformatics tools to allow interconnection and global integration of all clinical data but also a universal legal framework to protect the privacy of every patient. While recognizing that CTS can never replace 'real-life' trials, they should be implemented in future drug development schemes to provide quantitative support for decision-making. This in silico medicine opens the way to the P4 medicine: predictive, preventive, personalized and participatory.
Collapse
Affiliation(s)
- Jocelyn Gal
- Epidemiology and Biostatistics Unit at the Antoine Lacassagne Center, Nice, France
| | | | | | | | | | | | - Paul Gougis
- Pitie´-Salp^etrie`re Hospital in Paris, France
| | | | | | - Agnes Paquet
- Molecular and Cellular Pharmacology Institute of Sophia Antipolis, Valbonne, France
| | | |
Collapse
|
9
|
Peskov K, Azarov I, Chu L, Voronova V, Kosinsky Y, Helmlinger G. Quantitative Mechanistic Modeling in Support of Pharmacological Therapeutics Development in Immuno-Oncology. Front Immunol 2019; 10:924. [PMID: 31134058 PMCID: PMC6524731 DOI: 10.3389/fimmu.2019.00924] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Following the approval, in recent years, of the first immune checkpoint inhibitor, there has been an explosion in the development of immuno-modulating pharmacological modalities for the treatment of various cancers. From the discovery phase to late-stage clinical testing and regulatory approval, challenges in the development of immuno-oncology (IO) drugs are multi-fold and complex. In the preclinical setting, the multiplicity of potential drug targets around immune checkpoints, the growing list of immuno-modulatory molecular and cellular forces in the tumor microenvironment-with additional opportunities for IO drug targets, the emergence of exploratory biomarkers, and the unleashed potential of modality combinations all have necessitated the development of quantitative, mechanistically-oriented systems models which incorporate key biology and patho-physiology aspects of immuno-oncology and the pharmacokinetics of IO-modulating agents. In the clinical setting, the qualification of surrogate biomarkers predictive of IO treatment efficacy or outcome, and the corresponding optimization of IO trial design have become major challenges. This mini-review focuses on the evolution and state-of-the-art of quantitative systems models describing the tumor vs. immune system interplay, and their merging with quantitative pharmacology models of IO-modulating agents, as companion tools to support the addressing of these challenges.
Collapse
Affiliation(s)
- Kirill Peskov
- M&S Decisions, Moscow, Russia.,Computational Oncology Group, I.M. Sechenov First Moscow State Medical University of the Russian Ministry of Health, Moscow, Russia
| | | | - Lulu Chu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, MA, United States
| | | | | | - Gabriel Helmlinger
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
10
|
|
11
|
Agur Z. The resonance phenomenon in population persistence: can the same theory guide both national security policies and personalized medicine? Croat Med J 2014; 55:93-102. [PMID: 24778095 PMCID: PMC4023101 DOI: 10.3325/cmj.2014.55.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The theory of resonance in population persistence proposes that the survival of a population that is exposed to externally inflicted loss processes (disturbances) during part of its life cycle is dependent on the relation between the average period of the disturbances and the average generation time of the population. This suggests that the size of a population can be controlled by manipulating the period between external disturbances. This theory, first formalized in a study of intertidal Red Sea mollusks exposed to periodic storms, has been found to apply to such seemingly disparate phenomena as the spread of a pathogen among susceptible individuals and the response of malignant cancer cells to chemotherapy. The current article provides a brief review of the evolution of the resonance theory into a tool that can be applied to designing vaccination policies - specifically, in preparedness for bio-terrorism attacks - and in personalized medicine. A personalized protocol based on the resonance theory was applied to a cancer patient, stabilizing his tumor progression, relieving his hematopoietic toxicity, and extending his survival.
Collapse
Affiliation(s)
- Zvia Agur
- Zvia Agur, , Institute for Medical BioMathemetics (IMBM), Bene Ataroth, Israel
| |
Collapse
|
12
|
Kogan Y, Agur Z, Elishmereni M. A mathematical model for the immunotherapeutic control of the Th1/Th2 imbalance in melanoma. ACTA ACUST UNITED AC 2013. [DOI: 10.3934/dcdsb.2013.18.1017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Reconsidering the Paradigm of Cancer Immunotherapy by Computationally Aided Real-time Personalization. Cancer Res 2012; 72:2218-27. [DOI: 10.1158/0008-5472.can-11-4166] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lavi O, Gottesman MM, Levy D. The dynamics of drug resistance: a mathematical perspective. Drug Resist Updat 2012; 15:90-7. [PMID: 22387162 DOI: 10.1016/j.drup.2012.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to chemotherapy is a key impediment to successful cancer treatment that has been intensively studied for the last three decades. Several central mechanisms have been identified as contributing to the resistance. In the case of multidrug resistance (MDR), the cell becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug initially administered. Mathematical models of drug resistance have dealt with many of the known aspects of this field, such as pharmacologic sanctuary and location/diffusion resistance, intrinsic resistance, induced resistance and acquired resistance. In addition, there are mathematical models that take into account the kinetic/phase resistance, and models that investigate intracellular mechanisms based on specific biological functions (such as ABC transporters, apoptosis and repair mechanisms). This review covers aspects of MDR that have been mathematically studied, and explains how, from a methodological perspective, mathematics can be used to study drug resistance. We discuss quantitative approaches of mathematical analysis, and demonstrate how mathematics can be used in combination with other experimental and clinical tools. We emphasize the potential benefits of integrating analytical and mathematical methods into future clinical and experimental studies of drug resistance.
Collapse
Affiliation(s)
- Orit Lavi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20742, USA
| | | | | |
Collapse
|