1
|
Gardner JK, Jackaman C, Mamotte CDS, Nelson DJ. The Regulatory Status Adopted by Lymph Node Dendritic Cells and T Cells During Healthy Aging Is Maintained During Cancer and May Contribute to Reduced Responses to Immunotherapy. Front Med (Lausanne) 2018; 5:337. [PMID: 30560130 PMCID: PMC6287204 DOI: 10.3389/fmed.2018.00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with an increased incidence of cancer. One contributing factor could be modulation of immune cells responsible for anti-tumor responses, such as dendritic cells (DCs) and T cells. These immunological changes may also impact the efficacy of cancer immunotherapies in the elderly. The effects of healthy aging on DCs and T cells, and their impact on anti-mesothelioma immune responses, had not been reported. This study examined DCs and T cells in young (2–5 months; equivalent to 16–26 human years) and elderly (20–24 months; equivalent to 60–70 human years) healthy and mesothelioma-bearing C57BL/6J mice. During healthy aging, elderly lymph nodes adopted a regulatory profile, characterized by: (i) increased plasmacytoid DCs, (ii) increased expression of the adenosine-producing enzyme CD73 on CD11c+ cells, and (iii) increased expression of multiple regulatory markers (including CD73, the adenosine A2B receptor, CTLA-4, PD-1, ICOS, LAG-3, and IL-10) on CD8+ and CD4+ T cells, compared to lymph nodes from young mice. Although mesotheliomas grew faster in elderly mice, the increased regulatory status observed in healthy elderly lymph node DCs and T cells was not further exacerbated. However, elderly tumor-bearing mice demonstrated reduced MHC-I, MHC-II and CD80 on CD11c+ cells, and decreased IFN-γ by CD8+ and CD4+ T cells within tumors, compared to young counterparts, implying loss of function. An agonist CD40 antibody based immunotherapy was less efficient at promoting tumor regression in elderly mice, which may be due to: (i) failure of elderly CD8+ T cells to up-regulate perforin, and (ii) increased expression of multiple regulatory markers on CD11c+ cells and T cells in elderly tumor-draining lymph nodes (including CD73, PD-1, ICOS, LAG-3, and TGF-β). Our findings suggest that checkpoint blockade may improve responses to immunotherapy in elderly hosts with mesothelioma, and warrants further investigation.
Collapse
Affiliation(s)
- Joanne K Gardner
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Connie Jackaman
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Cyril D S Mamotte
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Delia J Nelson
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
2
|
Larbi A, Rymkiewicz P, Vasudev A, Low I, Shadan NB, Mustafah S, Ayyadhury S, Fulop T. The immune system in the elderly: a fair fight against diseases? ACTA ACUST UNITED AC 2013. [DOI: 10.2217/ahe.12.78] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The immune system is a very dynamic network, consisting of various innate and adaptive cells acting via direct cell–cell contact, as well as indirect messaging mediated by soluble factors. Changes in the number or quality of receptors involved in these events alter the capacity of the immune system to respond properly. There is an increasing awareness that many chronic infections and diseases, such as cytomegalovirus, impact on the immune system. Concurrently, there are changes in immune profiles of healthy, as well as ill, elderly individuals. All these changes translate into obvious signs of immunological aging that are more profound in diseases. This review will discuss the manifestation of different diseases in the elderly and how the immune system behaves in such situations.
Collapse
Affiliation(s)
- Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology & Research (A*STAR), 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Paulina Rymkiewicz
- Singapore Immunology Network (SIgN), Agency for Science Technology & Research (A*STAR), 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Anusha Vasudev
- Singapore Immunology Network (SIgN), Agency for Science Technology & Research (A*STAR), 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Ivy Low
- Singapore Immunology Network (SIgN), Agency for Science Technology & Research (A*STAR), 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Nurhidaya Binte Shadan
- Singapore Immunology Network (SIgN), Agency for Science Technology & Research (A*STAR), 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Seri Mustafah
- Singapore Immunology Network (SIgN), Agency for Science Technology & Research (A*STAR), 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Shamini Ayyadhury
- Singapore Immunology Network (SIgN), Agency for Science Technology & Research (A*STAR), 8A Biomedical Grove, Immunos, 138648, Singapore
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine, Sherbrooke University, 1036 rue Belvedere Sud, J1H4C4 Sherbrooke, Canada
| |
Collapse
|
3
|
Mazzola P, Radhi S, Mirandola L, Annoni G, Jenkins M, Cobos E, Chiriva-Internati M. Aging, cancer, and cancer vaccines. IMMUNITY & AGEING 2012; 9:4. [PMID: 22510392 PMCID: PMC3353870 DOI: 10.1186/1742-4933-9-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 04/17/2012] [Indexed: 12/26/2022]
Abstract
World population has experienced continuous growth since 1400 A.D. Current projections show a continued increase - but a steady decline in the population growth rate - with the number expected to reach between 8 and 10.5 billion people within 40 years. The elderly population is rapidly rising: in 1950 there were 205 million people aged 60 or older, while in 2000 there were 606 million. By 2050, the global population aged 60 or over is projected to expand by more than three times, reaching nearly 2 billion people [1]. Most cancers are age-related diseases: in the US, 50% of all malignancies occur in people aged 65-95. 60% of all cancers are expected to be diagnosed in elderly patients by 2020 [2]. Further, cancer-related mortality increases with age: 70% of all malignancy-related deaths are registered in people aged 65 years or older [3]. Here we introduce the microscopic aspects of aging, the pro-inflammatory phenotype of the elderly, and the changes related to immunosenescence. Then we deal with cancer disease and its development, the difficulty of treatment administration in the geriatric population, and the importance of a comprehensive geriatric assessment. Finally, we aim to analyze the complex interactions of aging with cancer and cancer vaccinology, and the importance of this last approach as a complementary therapy to different levels of prevention and treatment. Cancer vaccines, in fact, should at present be recommended in association to a stronger cancer prevention and conventional therapies (surgery, chemotherapy, radiation therapy), both for curative and palliative intent, in order to reduce morbidity and mortality associated to cancer progression.
Collapse
Affiliation(s)
- Paolo Mazzola
- Department of Clinical and Preventive Medicine, University of Milano-Bicocca, Geriatric Clinic, San Gerardo University Hospital, Monza, Italy.,Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA
| | - Saba Radhi
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA
| | - Leonardo Mirandola
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA.,Department of Medicine, Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy.,The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Giorgio Annoni
- Department of Clinical and Preventive Medicine, University of Milano-Bicocca, Geriatric Clinic, San Gerardo University Hospital, Monza, Italy
| | - Marjorie Jenkins
- Department of Medicine, Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy.,The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Everardo Cobos
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA.,The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Maurizio Chiriva-Internati
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, 3601 4th St, Lubbock, TX 79430, USA.,The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
4
|
Leibovici J, Itzhaki O, Huszar M, Sinai J. Targeting the tumor microenvironment by immunotherapy: part 2. Immunotherapy 2011; 3:1385-408. [DOI: 10.2217/imt.11.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer therapy was traditionally centered on the neoplastic cells. This included mainly surgery, radiation, and chemotherapy, in some cases hormone therapy and to a lesser extent immunotherapy – all traditionally targeted to the highly proliferating mutated tumor cells. In view of our present understanding of the powerfull influence of the tumor microenvironment (TME) on cancer behavior and response – and lack of response – to treatment, this previously ignored constituent of cancer now has to be considered as an important, even indispensable target for therapy. The TME may be targeted both to its immune and to its nonimmune components. The various immune evasion elements of the TME should be targeted as well.
Collapse
Affiliation(s)
| | - Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Monica Huszar
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Judith Sinai
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|