1
|
Bai X, Yang T, Shao X, Jia B, Hao H, Rahman FU, Zhang Y. Design and synthesis of glycofullerene derivatives as novel photosensitizer for potential application in PDT to treat cancer. Eur J Med Chem 2025; 281:117009. [PMID: 39536494 DOI: 10.1016/j.ejmech.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Cancer is one of the most aggressive diseases known to humanity, characterized by low survival rates and poor prognoses. Currently, platinum-based anticancer drugs and traditional photosensitizers used in photodynamic therapy (PDT) are the most widely employed treatment modalities. However, the platinum-based medications, particularly cisplatin, the most commonly used agent, have several drawbacks. These drawbacks may include systemic toxicity, which can manifest as nephrotoxicity, neurotoxicity, ototoxicity, or emesis during treatment. Such side effects can severely impair patients and significantly diminish the overall effectiveness of therapeutic interventions. In contrast, photodynamic therapy does not present these disadvantages. PDT offers numerous benefits, including reduced long-term morbidity, minimal systemic toxicity, low invasiveness, negligible drug resistance, and temporal and geographic selectivity, all of which enhance patients' quality of life. Consequently, the search for novel, effective, and practical photosensitizers is essential. Fullerenes possess unique physicochemical properties that make them highly suitable as photosensitizers. In this study, we developed a comprehensive and straightforward synthesis for two water-soluble sugar fullerene derivatives, designated as 12 and 13. Multiple analytical techniques, including 1H NMR, 13C NMR, high-resolution mass spectrometry (HRMS), Fourier-transform infrared spectroscopy (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy, collectively confirmed the chemical structures of these derivatives and validated their successful synthesis. Upon exposure to white light irradiation at an intensity of 2.5J/cm2, compound 13 demonstrated significant biological activity against three distinct tumor cell lines: HepG2, MKN45, and RPMI 4788, with IC50 values of 5.65 μM, 2.43 μM, and 1.82 μM, respectively. This study establishes a foundation for the development of innovative clinical photosensitizers.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Tian Yang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xinle Shao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Bobo Jia
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
2
|
Bai X, Dong C, Shao X, Rahman FU, Hao H, Zhang Y. Research progress of fullerenes and their derivatives in the field of PDT. Eur J Med Chem 2024; 271:116398. [PMID: 38614061 DOI: 10.1016/j.ejmech.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
In contemporary studies, the predominant utilization of C60 derivatives pertains to their role as photosensitizers or agents that scavenge free radicals. The intriguing coexistence of these divergent functionalities has prompted extensive investigation into water-soluble fullerenes. The photodynamic properties of these compounds find practical applications in DNA cleavage, antitumor interventions, and antibacterial endeavors. Consequently, photodynamic therapy is progressively emerging as a pivotal therapeutic modality within the biomedical domain, owing to its notable levels of safety and efficacy. The essential components of photodynamic therapy encompass light of the suitable wavelength, oxygen, and a photosensitizer, wherein the reactive oxygen species generated by the photosensitizer play a pivotal role in the therapeutic mechanism. The remarkable ability of fullerenes to generate singlet oxygen has garnered significant attention from scholars worldwide. Nevertheless, the limited permeability of fullerenes across cell membranes owing to their low water solubility necessitates their modification to enhance their efficacy and utilization. This paper reviews the applications of fullerene derivatives as photosensitizers in antitumor and antibacterial fields for the recent years.
Collapse
Affiliation(s)
- Xue Bai
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Chungeng Dong
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xinle Shao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
3
|
Sourvanos D, Sun H, Zhu TC, Dimofte A, Byrd B, Busch TM, Cengel KA, Neiva R, Fiorellini JP. Three-dimensional printing of the human lung pleural cavity model for PDT malignant mesothelioma. Photodiagnosis Photodyn Ther 2024; 46:104014. [PMID: 38346466 DOI: 10.1016/j.pdpdt.2024.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE The primary aim was to investigate emerging 3D printing and optical acquisition technologies to refine and enhance photodynamic therapy (PDT) dosimetry in the management of malignant pleural mesothelioma (MPM). MATERIALS AND METHODS A rigorous digital reconstruction of the pleural lung cavity was conducted utilizing 3D printing and optical scanning methodologies. These reconstructions were systematically assessed against CT-derived data to ascertain their accuracy in representing critical anatomic features and post-resection topographical variations. RESULTS The resulting reconstructions excelled in their anatomical precision, proving instrumental translation for precise dosimetry calculations for PDT. Validation against CT data confirmed the utility of these models not only for enhancing therapeutic planning but also as critical tools for educational and calibration purposes. CONCLUSION The research outlined a successful protocol for the precise calculation of light distribution within the complex environment of the pleural cavity, marking a substantive advance in the application of PDT for MPM. This work holds significant promise for individualizing patient care, minimizing collateral radiation exposure, and improving the overall efficiency of MPM treatments.
Collapse
Affiliation(s)
- Dennis Sourvanos
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA; Center for Innovation and Precision Dentistry (CiPD), School of Dental Medicine, School of Engineering, University of Pennsylvania, PA, USA.
| | - Hongjing Sun
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Timothy C Zhu
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Andreea Dimofte
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Brook Byrd
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Keith A Cengel
- Department of Radiation Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, PA, USA
| | - Rodrigo Neiva
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Joseph P Fiorellini
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
4
|
Kuzmina NS, Fedotova EA, Jankovic P, Gribova GP, Nyuchev AV, Fedorov AY, Otvagin VF. Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation. Pharmaceutics 2024; 16:479. [PMID: 38675140 PMCID: PMC11053670 DOI: 10.3390/pharmaceutics16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| | - Vasilii F. Otvagin
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| |
Collapse
|
5
|
Liu J, Xu H, Gao S, Liu L, Qu J, Ohulchanskyy TY. Combining near infrared fluorescence and laser speckle imaging with optical tissue clearing for in vivo transcranial monitoring of cerebral blood vessels damaged by photodynamic nanoformulation. BIOMEDICAL OPTICS EXPRESS 2024; 15:924-937. [PMID: 38404313 PMCID: PMC10890862 DOI: 10.1364/boe.513820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
In vivo near infrared (NIR) fluorescence imaging and laser speckle contrast imaging (LSCI) are emerging optical bioimaging modalities, which can provide information on blood vessels morphology, volume and the blood flow velocity. Optical tissue clearing (OTC) technique addresses a light scattering problem in optical bioimaging, which is imperative for the transcranial brain imaging. Herein, we report an approach combining NIR fluorescence and LSC microscopy imaging with OTC. A liposomal nanoformulation comprising NIR fluorescent dye ICG and photosensitizer BPD was synthesized and injected intravenously into mouse with OTC treated skull. Transcranial excitation of BPD in nanoliposomes resulted in the localized, irradiation dose dependent photodynamic damage of the brain blood vessels, which was manifested both in NIR fluorescence and LSC transcranial imaging, revealing changes in the vessels morphology, volume and the blood flow rate. The developed approach allows for bimodal imaging guided, localized vascular PDT of cancer and other diseases.
Collapse
Affiliation(s)
- Jiantao Liu
- Key Laboratory of Optoelectronic Devices
and Systems of Ministry of Education and Guangdong Province, College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Hao Xu
- Key Laboratory of Optoelectronic Devices
and Systems of Ministry of Education and Guangdong Province, College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Siqi Gao
- Key Laboratory of Optoelectronic Devices
and Systems of Ministry of Education and Guangdong Province, College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices
and Systems of Ministry of Education and Guangdong Province, College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices
and Systems of Ministry of Education and Guangdong Province, College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
- Engineering Research Center of Optical
Instrument and System, Ministry of Education, Shanghai Key Lab of
Modern Optical System, School of Optical-Electrical and Computer
Engineering, University of Shanghai for Science and
Technology, Shanghai, China
| | - Tymish Y. Ohulchanskyy
- Key Laboratory of Optoelectronic Devices
and Systems of Ministry of Education and Guangdong Province, College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Zhang Y, Lu Y, Li Y, Xu Y, Song W. Poly(Glutamic Acid)-Engineered Nanoplatforms for Enhanced Cancer Phototherapy. Curr Drug Deliv 2024; 21:326-338. [PMID: 36650626 DOI: 10.2174/1567201820666230116164511] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 01/19/2023]
Abstract
Phototherapies, including photothermal therapy and photodynamic therapy, have gained booming development over the past several decades for their attractive non-invasiveness nature, negligible adverse effects, minimal systemic toxicity, and high spatial selectivity. Phototherapy usually requires three components: light irradiation, photosensitizers, and molecular oxygen. Photosensitizers can convert light energy into heat or reactive oxygen species, which can be used in the tumor-killing process. The direct application of photosensitizers in tumor therapy is restricted by their poor water solubility, fast clearance, severe toxicity, and low cellular uptake. The encapsulation of photosensitizers into nanostructures is an attractive strategy to overcome these critical limitations. Poly(glutamic acid) (PGA) is a kind of poly(amino acid)s containing the repeating units of glutamic acid. PGA has superiority for cancer treatment because of its good biocompatibility, low immunogenicity, and modulated pH responsiveness. The hydrophilicity nature of PGA allows the physical entrapment of photosensitizers and anticancer drugs via the construction of amphiphilic polymers. Moreover, the pendent carboxyl groups of PGA enable chemical conjugation with therapeutic agents. In this mini-review, we highlight the stateof- the-art design and fabrication of PGA-based nanoplatforms for phototherapy. We also discuss the potential challenges and future perspectives of phototherapy, and clinical translation of PGA-based nanomedicines.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Yicong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai-201318, P. R. China
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai-200093, P. R. China
| |
Collapse
|
7
|
Algorri JF, López-Higuera JM, Rodríguez-Cobo L, Cobo A. Advanced Light Source Technologies for Photodynamic Therapy of Skin Cancer Lesions. Pharmaceutics 2023; 15:2075. [PMID: 37631289 PMCID: PMC10458875 DOI: 10.3390/pharmaceutics15082075] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Photodynamic therapy (PDT) is an increasingly popular dermatological treatment not only used for life-threatening skin conditions and other tumors but also for cosmetic purposes. PDT has negligible effects on underlying functional structures, enabling tissue regeneration feasibility. PDT uses a photosensitizer (PS) and visible light to create cytotoxic reactive oxygen species, which can damage cellular organelles and trigger cell death. The foundations of modern photodynamic therapy began in the late 19th and early 20th centuries, and in recent times, it has gained more attention due to the development of new sources and PSs. This review focuses on the latest advancements in light technology for PDT in treating skin cancer lesions. It discusses recent research and developments in light-emitting technologies, their potential benefits and drawbacks, and their implications for clinical practice. Finally, this review summarizes key findings and discusses their implications for the use of PDT in skin cancer treatment, highlighting the limitations of current approaches and providing insights into future research directions to improve both the efficacy and safety of PDT. This review aims to provide a comprehensive understanding of PDT for skin cancer treatment, covering various aspects ranging from the underlying mechanisms to the latest technological advancements in the field.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Luís Rodríguez-Cobo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Adolfo Cobo
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
8
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
9
|
Wen Y, Zeng L, Chen Q, Li Y, Fu M, Wang Z, Liu H, Li X, Huang P, Wu W, Zou Q, Yi W. RNA-Seq-based transcriptomics analysis during the photodynamic therapy of primary cells in secondary hyperparathyroidism. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:905-917. [PMID: 36750541 DOI: 10.1007/s43630-023-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND The aim of this study was to identify changes in gene expression before and after 5-aminolevulinic acid-mediated photodynamic therapy (5-ALA-PDT) and to investigate the potential mechanism of 5-ALA-PDT based on ribonucleic acid sequencing (RNA-Seq) analysis. METHODS Secondary hyperparathyroidism (SHPT) primary cells were isolated from surgically excised specimens and exposed to laser light. The transcription profiles of SHPT primary cells were identified through RNA-Seq. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathway analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were used to validate genes based on RNA-Seq results. RESULTS In total, 1320 DEGs were identified, of which 1019 genes were upregulated and 301 genes were downregulated. GO and KEGG pathway analyses identified significantly enriched pathways in DEGs, including TGF beta in extracellular matrix (ECM), negative regulation of triglyceride biosynthetic process, protein heterodimerization activity, systemic lupus erythematosus, ECM-receptor interaction, focal adhesion and protein digestion and absorption. Protein-protein interaction (PPI) network analyses identified potential heat shock protein (HSP) interactions among the DEGs. Eight HSP genes were also identified that were most likely involved in 5-ALA-PDT, which were further validated by RT-qPCR and western blotting. CONCLUSIONS The findings of this descriptive study reveal changes in the transcriptome profile during 5-ALA-PDT, suggesting that gene expression and mutation, signaling pathways, and the molecular network are altered in SHPT primary cells. The above findings provide new insight for further studies on the mechanisms underlying 5-ALA-PDT in SHPT.
Collapse
Affiliation(s)
- Ying Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Liyun Zeng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Yitong Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Mengdie Fu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Zixin Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xiejia Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wei Wu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China.
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, People's Republic of China.
| |
Collapse
|
10
|
Itoo AM, Paul M, Padaga SG, Ghosh B, Biswas S. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS OMEGA 2022; 7:45882-45909. [PMID: 36570217 PMCID: PMC9773346 DOI: 10.1021/acsomega.2c05852] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The clinical need for photodynamic therapy (PDT) has been growing for several decades. Notably, PDT is often used in oncology to treat a variety of tumors since it is a low-risk therapy with excellent selectivity, does not conflict with other therapies, and may be repeated as necessary. The mechanism of action of PDT is the photoactivation of a particular photosensitizer (PS) in a tumor microenvironment in the presence of oxygen. During PDT, cancer cells produce singlet oxygen (1O2) and reactive oxygen species (ROS) upon activation of PSs by irradiation, which efficiently kills the tumor. However, PDT's effectiveness in curing a deep-seated malignancy is constrained by three key reasons: a tumor's inadequate PS accumulation in tumor tissues, a hypoxic core with low oxygen content in solid tumors, and limited depth of light penetration. PDTs are therefore restricted to the management of thin and superficial cancers. With the development of nanotechnology, PDT's ability to penetrate deep tumor tissues and exert desired therapeutic effects has become a reality. However, further advancement in this field of research is necessary to address the challenges with PDT and ameliorate the therapeutic outcome. This review presents an overview of PSs, the mechanism of loading of PSs, nanomedicine-based solutions for enhancing PDT, and their biological applications including chemodynamic therapy, chemo-photodynamic therapy, PDT-electroporation, photodynamic-photothermal (PDT-PTT) therapy, and PDT-immunotherapy. Furthermore, the review discusses the mechanism of ROS generation in PDT advantages and challenges of PSs in PDT.
Collapse
|
11
|
Martins JN, Lucredi NC, Oliveira MC, Oliveira ACV, Godoy MA, Sá-Nakanishi AB, Bracht L, Cesar GB, Gonçalves RS, Vicentini VE, Caetano W, Godoy VA, Bracht A, Comar JF. Poloxamers-based nanomicelles as delivery vehicles of hypericin for hepatic photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Bartusik-Aebisher D, Żołyniak A, Barnaś E, Machorowska-Pieniążek A, Oleś P, Kawczyk-Krupka A, Aebisher D. The Use of Photodynamic Therapy in the Treatment of Brain Tumors-A Review of the Literature. Molecules 2022; 27:molecules27206847. [PMID: 36296440 PMCID: PMC9607067 DOI: 10.3390/molecules27206847] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022] Open
Abstract
The treatment of neoplastic disease of the brain is still a challenge for modern medicine. Therefore, advanced methodologies are needed that can rationally and successfully contribute to the early diagnosis of primary and metastatic tumors growing within the brain. Photodynamic therapy (PDT) seems to be a valuable method of treatment for precancerous and cancerous lesions including brain tumors. The main advantage of PDT is its high efficiency, minimal invasiveness and no serious side effects, compared with chemotherapy and radiotherapy. This review was conducted through a comprehensive search of articles, scientific information databases and the websites of organizations dealing with cancer treatment. Key points from clinical trials conducted by other researchers are also discussed. The common databases such as PubMed, Google Scholar, EBSCO, Scopus, and Elsevier were used. Articles in the English language of reliable credibility were mainly analyzed. The type of publications considered included clinical and preclinical studies, systematic reviews, and case reports. Based on these collected materials, we see that scientists have already demonstrated the potential of PDT application in the field of brain tumors. Therefore, in this review, the treatment of neoplasm of the Central Nervous System (CNS) and the most common tumor, glioblastoma multiforme (GBM), have been explored. In addition, an overview of the general principles of PDT, as well as the mechanism of action of the therapy as a therapeutic platform for brain tumors, is described. The research was carried out in June 2022.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Aleksandra Żołyniak
- Students Biochemistry Science Club, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - Edyta Barnaś
- Institute of Health Sciences, Medical College of The University of Rzeszów, Rzeszów University, Kopisto 2a, 35-959 Rzeszów, Poland
| | - Agnieszka Machorowska-Pieniążek
- Department of Orthodontics, Division of Medical Sciences in Zabrze, Medical University of Silesia, 15 Poniatowskiego Street, 40-055 Katowice, Poland
| | - Piotr Oleś
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Center for Laser Diagnostics and Therapy, Department of Internal Medicine, Angiology and Physical Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Correspondence: (D.B.-A.); (A.Ż.); (A.K.-K.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów University, 35-959 Rzeszów, Poland
| |
Collapse
|
13
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
14
|
Huang S, Parekh V, Waisman J, Jones V, Yuan Y, Vora N, Li R, Jung J, Kruper L, Abdulla F, Fong Y, Li W. Cutaneous metastasectomy: Is there a role in breast cancer? A systematic review and overview of current treatment modalities. J Surg Oncol 2022; 126:217-238. [PMID: 35389520 PMCID: PMC9545220 DOI: 10.1002/jso.26870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 12/21/2022]
Abstract
Cutaneous metastases (CM) are neoplastic lesions involving the dermis or subcutaneous tissues, originating from another primary tumor. Breast cancer is commonest primary solid tumor, representing 24%-50% of CM patients. There is no "standard of care" on management. In particular, the role of surgery in the treatment of cutaneous metastases from breast carcinoma (CMBC) remains controversial. This systematic review evaluates the role of cutaneous metastasectomy in breast cancer and provides an overview of existing treatment types.
Collapse
Affiliation(s)
- Samantha Huang
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - James Waisman
- Department of Medical Oncology & Therapeutics ResearchCity of HopeDuarteCaliforniaUSA
| | - Veronica Jones
- Division of Breast SurgeryCity of HopeDuarteCaliforniaUSA
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutics ResearchCity of HopeDuarteCaliforniaUSA
| | - Nayana Vora
- Department of Radiation OncologyCity of HopeDuarteCaliforniaUSA
| | - Richard Li
- Department of Radiation OncologyCity of HopeDuarteCaliforniaUSA
| | - Jae Jung
- Division of Derm‐oncologyNorton Cancer InstituteLouisvilleKentuckyUSA
| | - Laura Kruper
- Division of Breast SurgeryCity of HopeDuarteCaliforniaUSA
| | - Farah Abdulla
- Division of DermatologyCity of HopeDuarteCaliforniaUSA
| | - Yuman Fong
- Department of SurgeryCity of HopeDuarteCaliforniaUSA
| | - Wai‐Yee Li
- Division of Plastic SurgeryCity of HopeDuarteCaliforniaUSA
| |
Collapse
|
15
|
Butera V, Mazzone G, Detz H. Dinuclear Ruthenium(II)‐Pyrrolide Complexes Linked by Different Organic Units as PDT Photosensitizers: Computational Study of the Linker Influence on the Photophysical Properties*. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Valeria Butera
- CEITEC – Central European Institute of Technology Brno University of Technology Purkyňova 123 Brno 612 00 Czech Republic
| | - Gloria Mazzone
- Department of Chemistry and Chemical Technologies Università della Calabria 87036 Arcavacata di Rende, CS Italy
| | - Hermann Detz
- CEITEC – Central European Institute of Technology Brno University of Technology Purkyňova 123 Brno 612 00 Czech Republic
- Center for Micro- and Nanostructures & Institute of Solid State Electronics TU Wien 1040 Vienna Austria
| |
Collapse
|
16
|
Diaz-Diestra D, Gholipour HM, Bazian M, Thapa B, Beltran-Huarac J. Photodynamic Therapeutic Effect of Nanostructured Metal Sulfide Photosensitizers on Cancer Treatment. NANOSCALE RESEARCH LETTERS 2022; 17:33. [PMID: 35258742 PMCID: PMC8904679 DOI: 10.1186/s11671-022-03674-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/27/2022] [Indexed: 05/02/2023]
Abstract
Photodynamic therapy (PDT) utilizes photosensitizers (PSs) to produce reactive oxygen species (ROSs) upon irradiation, which causes the shutdown of vessels and deprives the tumor of nutrients and oxygen, and in turn induces adverse effects on the immune system. However, significant efforts are needed to increase the efficiency in PDT in terms of light delivery to specific PSs for the clinical treatment of tumors located deep under the skin. Even though PDT offers a disease site-specific treatment modality, current efforts are directed to improve the solubility (in body fluids and injectable solvents), photostability, amphiphilicity (for tissue penetration), elimination, and systemic toxicity of traditional PSs based on porphyrin derivatives. Nanostructured materials show promising features to achieve most of such combined efforts. They can be artificially engineered to carry multiple theranostic agents onto targeted tumor sites. However, recent studies on photosensitive Cd-based nanostructures, mostly used in PDT, indicate that leeching of Cd2+ ions is stimulated when they are exposed to harsh biological conditions for continuous periods of time, thus making them acutely toxic and hindering their applications in in vivo settings. Since nanostructured materials are not completely immune to degradation, great strides have been made to seek new alternatives. In this review, we focus on the latest advances of Cd-free nanostructured metal transition sulfides (MTSs) as alternative PSs and study their high-energy transfer efficiency, rational designs, and potential applications in cancer-targeted PDT. Nanostructured MTSs are discussed in the context of their versatility to serve as phototherapy agents and superior properties, including their strong absorption in the NIR region, excellent photothermal conversion efficiency, controlled reactive oxygen species (ROS) production, versatile surface chemistry, high fluorescence, and structural and thermal stability. We discuss the latest advancements in correlating the self-aggregation of MTSs with their passive tumor cell targeting, highlighting their ability to efficiently produce ROSs, and mitigating their dark toxicity through polymeric functionalization. Treatment of deep-seated tumors by using these PSs upon preferential uptake by tumor tissues (due to the enhanced permeability and retention effect) is also reviewed. We finally summarize the main future perspectives of MTSs as next-generation PSs within the context of cancer theranostics.
Collapse
Affiliation(s)
- Daysi Diaz-Diestra
- Department of Chemistry, University of Puerto Rico, San Juan, PR 00931 USA
- Present Address: NAMSA, 400 US Highway 169 S, Suite 500, Minneapolis, MN 55426 USA
| | | | - Marjan Bazian
- Department of Physics, Alzahra University, 19938 Tehran, Iran
| | - Bibek Thapa
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Juan Beltran-Huarac
- Department of Physics, Howell Science Complex, East Carolina University, Greenville, NC 27858 USA
| |
Collapse
|
17
|
Zhou Y, Tong F, Gu W, He S, Yang X, Li J, Gao YD, Gao H. Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharm Sin B 2022; 12:1416-1431. [PMID: 35530138 PMCID: PMC9072251 DOI: 10.1016/j.apsb.2021.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/24/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Considering that photodynamic therapy (PDT)-induced oxygen consumption and microvascular damage could exacerbate hypoxia to drive more glycolysis and angiogenesis, a novel approach to potentiate PDT and overcome the resistances of hypoxia is avidly needed. Herein, morpholine-modified PEGylated bilirubin was proposed to co-deliver chlorin e6, a photosensitizer, and diclofenac (Dc). In acidic milieu, the presence of morpholine could enable the nanocarriers to selectively accumulate in tumor cells, while PDT-generated reactive oxidative species (ROS) resulted in the collapse of bilirubin nanoparticles and rapid release of Dc. Combining with Dc showed a higher rate of apoptosis over PDT alone and simultaneously triggered a domino effect, including blocking the activity and expression of lactate dehydrogenase A (LDHA), interfering with lactate secretion, suppressing the activation of various angiogenic factors and thus obviating hypoxia-induced resistance-glycolysis and angiogenesis. In addition, inhibition of hypoxia-inducible factor-1α (HIF-1α) by Dc alleviated hypoxia-induced resistance. This study offered a sequentially responsive platform to achieve sufficient tumor enrichment, on-demand drug release and superior anti-tumor outcomes in vitro and in vivo.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Weilong Gu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Siqin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Xiaotong Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Jiamei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Yue-Dong Gao
- Core Technology Facility of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Chinese Academy of Sciences Territorial Core Facility of Kunming Biological Diversity Regional Center, Kunming 650223, China
- Corresponding authors. Tel./fax: +86 187 80288069 (Huile Gao); +86 136 48811007 (Yue-Dong Gao).
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
- Corresponding authors. Tel./fax: +86 187 80288069 (Huile Gao); +86 136 48811007 (Yue-Dong Gao).
| |
Collapse
|
18
|
Değirmencioğlu İ, İren K, Yalçin İ, Göl C, Durmuş M. Synthesis of axially disubstituted silicon(IV) phthalocyanines and investigation of their photophysical and photochemical properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Álvarez D, Menéndez MI, López R. Computational Design of Rhenium(I) Carbonyl Complexes for Anticancer Photodynamic Therapy. Inorg Chem 2022; 61:439-455. [PMID: 34913679 PMCID: PMC8753654 DOI: 10.1021/acs.inorgchem.1c03130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/28/2022]
Abstract
New Re(I) carbonyl complexes are proposed as candidates for photodynamic therapy after investigating the effects of the pyridocarbazole-type ligand conjugation, addition of substituents to this ligand, and replacement of one CO by phosphines in [Re(pyridocarbazole)(CO)3(pyridine)] complexes by means of the density functional theory (DFT) and time-dependent DFT. We have found, first, that increasing the conjugation in the bidentate ligand reduces the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of the complex, so its absorption wavelength red-shifts. When the enlargement of this ligand is carried out by merging the electron-withdrawing 1H-pyrrole-2,5-dione heterocycle, it enhances even more the stabilization of the LUMO due to its electron-acceptor character. Second, the analysis of the shape and composition of the orbitals involved in the band of interest indicates which substituents of the bidentate ligand and which positions are optimal for reducing the HOMO-LUMO energy gap. The introduction of electron-withdrawing substituents into the pyridine ring of the pyridocarbazole ligand mainly stabilizes the LUMO, whereas the HOMO energy increases primarily when electron-donating substituents are introduced into its indole moiety. Each type of substituents results in a bathochromic shift of the lowest-lying absorption band, which is even larger if they are combined in the same complex. Finally, the removal of the π-backbonding interaction between Re and the CO trans to the monodentate pyridine when it is replaced by phosphines PMe3, 1,4-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA), and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) causes another extra bathochromic shift due to the destabilization of the HOMO, which is low with DAPTA, moderate with PMe3, but especially large with CAP. Through the combination of the PMe3 or CAP ligands with adequate electron-withdrawing and/or electron-donating substituents at the pyridocarbazole ligand, we have found several complexes with significant absorption at the therapeutic window. In addition, according to our results on the singlet-triplet energy gap, all of them should be able to produce cytotoxic singlet oxygen.
Collapse
Affiliation(s)
- Daniel Álvarez
- Departamento de Química Física
y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - M. Isabel Menéndez
- Departamento de Química Física
y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Ramón López
- Departamento de Química Física
y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
20
|
Fototerapia – metoda wykorzystywana w leczeniu przewlekłych schorzeń dermatologicznych. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Wykorzystanie energii świetlnej w terapii schorzeń o różnej etiologii towarzyszy człowiekowi od czasów starożytnych. Elementem decydującym o powodzeniu terapii jest dobranie odpowiedniej długości promieniowania (terapia NB-UVB, BB-UVB i UVA1) lub wystąpienie interakcji między substancją światłoczułą skumulowaną w zmienionej chorobowo tkance a zastosowanym promieniowaniem (terapia PUVA oraz terapia fotodynamiczna). Metody terapeutyczne wykorzystujące energię świetlną są klasyfikowane na podstawie wykorzystywanego zakresu promieniowania. Obecnie wyróżnia się fototerapię UV, wykorzystującą promieniowanie UVA lub UVB oraz terapię fotodynamiczną (PDT; photodynamic therapy), podczas której stosowane jest promieniowanie o długości fali 350-700 nm.
Fototerapia UV wykorzystywana jest do leczenia schorzeń dermatologicznych, takich jak łuszczyca, bielactwo oraz atopowe zapalenie skóry, ze względu na jej działanie immunosupresyjne i antyproliferacyjne. Jest dostępna w postaci terapii PUVA polegającej na wykorzystaniu synergicznego działania promieniowania ultrafioletowego (UVA) oraz związków o działaniu światłouczulającym (8-metoksypsolaren, 5-metoksypsolaren). Ponadto wyróżniono monoterapię promieniowaniem ultrafioletowym A1 (UVA1), szerokozakresowym UVB (BB-UVB) i wąskozakresowym UVB (NB-UVB). Terapia fotodynamiczna obok konwencjonalnych metod leczenia jest nowoczesną i nieinwazyjną alternatywą wykorzystywaną zarówno w diagnostyce, jak i terapii chorób o różnej etiologii. W 90% przypadków PDT jest stosowana w schorzeniach dermatologicznych, takich jak trądzik pospolity czy łuszczyca. Selektywna aktywność cytotoksyczna wykazywana w kierunku złośliwych komórek nowotworowych powoduje, że terapia fotodynamiczna stosowana jest także z powodzeniem w leczeniu zmian onkologicznych. Duży postęp, przejawiający się zarówno w opracowywaniu innowacyjnych substancji światłoczułych, jak i nowych źródeł promieniowania, sprawia, iż zakres stosowalności terapii fotodynamicznej ciągle się poszerza.
W artykule przedstawiono obecnie dostępne formy fototerapii poprzez opis mechanizmu ich działania, zastosowania oraz możliwości powstania skutków niepożądanych.
Collapse
|
21
|
Nistorescu S, Udrea AM, Badea MA, Lungu I, Boni M, Tozar T, Dumitrache F, Maraloiu VA, Popescu RG, Fleaca C, Andronescu E, Dinischiotu A, Staicu A, Balas M. Low Blue Dose Photodynamic Therapy with Porphyrin-Iron Oxide Nanoparticles Complexes: In Vitro Study on Human Melanoma Cells. Pharmaceutics 2021; 13:2130. [PMID: 34959411 PMCID: PMC8705854 DOI: 10.3390/pharmaceutics13122130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study was to investigate the effectiveness in photodynamic therapy of iron oxide nanoparticles (γ-Fe2O3 NPs), synthesized by laser pyrolysis technique, functionalized with 5,10,15,20-(Tetra-4-sulfonatophenyl) porphyrin tetraammonium (TPPS) on human cutaneous melanoma cells, after only 1 min blue light exposure. The efficiency of porphyrin loading on the iron oxide nanocarriers was estimated by using absorption and FTIR spectroscopy. The singlet oxygen yield was determined via transient characteristics of singlet oxygen phosphorescence at 1270 nm both for porphyrin functionalized nanoparticles and rose bengal used as standard. The irradiation was performed with a LED (405 nm, 1 mW/cm2) for 1 min after melanoma cells were treated with TPPS functionalized iron oxide nanoparticles (γ-Fe2O3 NPs_TPPS) and incubated for 24 h. Biological tests revealed a high anticancer effect of γ-Fe2O3 NPs_TPPS complexes indi-cated by the inhibition of tumor cell proliferation, reduction of cell adhesion, and induction of cell death through ROS generated by TPPS under light exposure. The biological assays were combined with the pharmacokinetic prediction of the porphyrin.
Collapse
Affiliation(s)
- Simona Nistorescu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Ana-Maria Udrea
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
- Research Institute of the University of Bucharest, Earth, Environmental and Life Sciences, Section-ICUB, 050663 Bucharest, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Iulia Lungu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Mihai Boni
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Tatiana Tozar
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Florian Dumitrache
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | | | - Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Claudiu Fleaca
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| | - Angela Staicu
- National Institute of Laser, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (S.N.); (A.-M.U.); (I.L.); (M.B.); (T.T.); (F.D.); (C.F.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.A.B.); (R.G.P.); (A.D.)
| |
Collapse
|
22
|
Lifshits LM, III JAR, Ramasamy E, Thummel RP, Cameron CG, McFarland SA. Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021; 8. [DOI: 10.1016/j.jpap.2021.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Shanazarov N, Zinchenko S, Zhapparov E, Muratov N, Turzhanova D, Bilyalov A, Tashpulatov T. The Clinical Case of Successful Application of Photodynamic Therapy in the Skin Metastases Treatment of Breast Cancer. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Efremenko AV, Dyakova ED, Ostroverkhov PV, Kirin NS, Mironov AF, Grin MA, Feofanov AV. Intracellular Localization and the Mechanisms of Photodynamic Action of 131-[2-(Guanidinyl)ethylamino] Chlorin e6 Dimethyl Ester. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021; 9:686303. [PMID: 34409014 PMCID: PMC8365093 DOI: 10.3389/fchem.2021.686303] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
26
|
Ricardo Barbosa de Lima N, Gomes Souza Junior F, Gaëlle Roullin V, Pal K. Amphipathic Au-sulfur-poly (ethylene glycol)-b-poly (butylene succinate) system prepared by interfacial reaction as in-silico photosensitizer and antineoplastic carrier. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
28
|
Hamblin MR, Abrahamse H. Factors Affecting Photodynamic Therapy and Anti-Tumor Immune Response. Anticancer Agents Med Chem 2021; 21:123-136. [PMID: 32188394 DOI: 10.2174/1871520620666200318101037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
Photodynamic Therapy (PDT) is a cancer therapy involving the systemic injection of a Photosensitizer (PS) that localizes to some extent in a tumor. After an appropriate time (ranging from minutes to days), the tumor is irradiated with red or near-infrared light either as a surface spot or by interstitial optical fibers. The PS is excited by the light to form a long-lived triplet state that can react with ambient oxygen to produce Reactive Oxygen Species (ROS) such as singlet oxygen and/or hydroxyl radicals, that kill tumor cells, destroy tumor blood vessels, and lead to tumor regression and necrosis. It has long been realized that in some cases, PDT can also stimulate the host immune system, leading to a systemic anti-tumor immune response that can also destroy distant metastases and guard against tumor recurrence. The present paper aims to cover some of the factors that can affect the likelihood and efficiency of this immune response. The structure of the PS, drug-light interval, rate of light delivery, mode of cancer cell death, expression of tumor-associated antigens, and combinations of PDT with various adjuvants all can play a role in stimulating the host immune system. Considering the recent revolution in tumor immunotherapy triggered by the success of checkpoint inhibitors, it appears that the time is ripe for PDT to be investigated in combination with other approaches in clinical scenarios.
Collapse
Affiliation(s)
- Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
29
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front Chem 2021; 9:691697. [PMID: 34178948 PMCID: PMC8223074 DOI: 10.3389/fchem.2021.691697] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900’s. Dougherty reported the treatment of skin tumors by PDT in 1978. Several further studies around 1980 demonstrated the effectiveness of PDT. Thus, the technique has attracted the attention of numerous researchers since then. Hematoporphyrin derivative received the FDA approval as a clinical application of PDT in 1995. We have indeed witnessed a considerable progress in the field over the last century. Given the fact that PDT has a favorable adverse event profile and can enhance anti-tumor immune responses as well as demonstrating minimally invasive characteristics, it is disappointing that PDT is not broadly utilized in the clinical setting for the treatment of malignant and/or non-malignant diseases. Several issues still hinder the development of PDT, such as those related with light, tissue oxygenation and inherent properties of the photosensitizers. Various photosensitizers have been designed/synthesized in order to overcome the limitations. In this Review, we provide a general overview of the mechanisms of action in terms of PDT in cancer, including the effects on immune system and vasculature as well as mechanisms related with tumor cell destruction. We will also briefly mention the application of PDT for non-malignant diseases. The current limitations of PDT utilization in cancer will be reviewed, since identifying problems associated with design/synthesis of photosensitizers as well as application of light and tissue oxygenation might pave the way for more effective PDT approaches. Furthermore, novel promising approaches to improve outcome in PDT such as selectivity, bioengineering, subcellular/organelle targeting, etc. will also be discussed in detail, since the potential of pioneering and exceptional approaches that aim to overcome the limitations and reveal the full potential of PDT in terms of clinical translation are undoubtedly exciting. A better understanding of novel concepts in the field (e.g. enhanced, two-stage, fractional PDT) will most likely prove to be very useful for pursuing and improving effective PDT strategies.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
30
|
de Lima NRB, de Souza Junior FG, Roullin VG, Pal K, da Silva ND. Head and Neck Cancer Treatments from Chemotherapy to Magnetic Systems: Perspectives and Challenges. Curr Radiopharm 2021; 15:2-20. [PMID: 33511961 DOI: 10.2174/1874471014999210128183231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the diseases causing society's fears as a stigma of death and pain. Head and Neck Squamous Cell Carcinoma (HNSCC) is a group of malignant neoplasms of different locations in this region of the human body. It is one of the leading causes of morbidity and mortality in Brazil, because these malignant neoplasias, in most cases, are diagnosed in late phases. Surgical excision, chemotherapy and radiotherapy encompass the forefront of antineoplastic therapy; however, the numerous side effects associated with these therapeutic modalities are well known. Some treatments present enough potential to help or replace conventional treatments, such as Magnetic Hyperthermia and Photodynamic Therapy. Such approaches require the development of new materials at the nanoscale, able to carry out the loading of their active components while presenting characteristics of biocompatibility mandatory for biomedical applications. OBJECTIVE This work aims to make a bibliographical review of HNSCC treatments. Recent techniques proven effective in other types of cancer were highlighted and raised discussion and reflections on current methods and possibilities of enhancing the treatment of HNSCC. METHOD The study was based on a bibliometric research between the years 2008 and 2019 using the following keywords: Cancer, Head and Neck Cancer, Chemotherapy, Radiotherapy, Photodynamic Therapy, and Hyperthermia. RESULTS A total of 5.151.725 articles were found, 3.712.670 about cancer, 175.470 on Head and Neck Cancer, 398.736 on Radiotherapy, 760.497 on Chemotherapy, 53.830 on Hyperthermia, and 50.522 on Photodynamic Therapy. CONCLUSION The analysis shows that there is still much room for expanding research, especially for alternative therapies since most of the studies still focus on conventional treatments and on the quest to overcome their side effects. The scientific community needs to keep looking for more effective therapies generating fewer side effects for the patient. Currently, the so-called alternative therapies are being used in combination with the conventional ones, but the association of these new therapies shows great potential, in other types of cancer, to improve the treatment efficacy.
Collapse
Affiliation(s)
- Nathali R B de Lima
- Biopolymer & Sensors Lab. - Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, bloco J. Universidade Federal de Rio de Janeiro, Zip code 21941-909,. Brazil
| | - Fernando G de Souza Junior
- Biopolymer & Sensors Lab. - Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, bloco J. Universidade Federal de Rio de Janeiro, Zip code 21941-909,. Brazil
| | - Valérie G Roullin
- Faculté de Pharmacie Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de la polytechnique Montreal QC, H3T 1J4,. Canada
| | - Kaushik Pal
- Wuhan University, Hubei Province, 8 East Lake South Road. Wuchang 430072,. China
| | - Nathalia D da Silva
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, bloco I. Universidade Federal de Rio de Janeiro,. Brazil
| |
Collapse
|
31
|
Won M, Koo S, Li H, Sessler JL, Lee JY, Sharma A, Kim JS. An Ethacrynic Acid‐Brominated BODIPY Photosensitizer (EA‐BPS) Construct Enhances the Lethality of Reactive Oxygen Species in Hypoxic Tumor‐Targeted Photodynamic Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012687] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Miae Won
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Seyoung Koo
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Hao Li
- Department of Chemistry Sungkyunkwan University Suwon 16419 Korea
| | - Jonathan L. Sessler
- Department of Chemistry University of Texas at Austin Austin TX 78712-1224 USA
| | - Jin Yong Lee
- Department of Chemistry Sungkyunkwan University Suwon 16419 Korea
| | - Amit Sharma
- CSIR—Central Scientific Instruments Organisation Sector-30 C Chandigarh 160030 India
| | - Jong Seung Kim
- Department of Chemistry Korea University Seoul 02841 Korea
| |
Collapse
|
32
|
Won M, Koo S, Li H, Sessler JL, Lee JY, Sharma A, Kim JS. An Ethacrynic Acid-Brominated BODIPY Photosensitizer (EA-BPS) Construct Enhances the Lethality of Reactive Oxygen Species in Hypoxic Tumor-Targeted Photodynamic Therapy. Angew Chem Int Ed Engl 2020; 60:3196-3204. [PMID: 33155344 DOI: 10.1002/anie.202012687] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Indexed: 01/16/2023]
Abstract
Despite being a clinically approved intervention for cancer, photodynamic therapy (PDT) still suffers from limitations. Prime among these is a therapeutic response that is mostly oxygen dependent. This limits the utility of PDT in treating hypoxic tumors since lower levels of cytotoxic reactive oxygen species (ROS) are generated in regions of low oxygen tension. Glutathione-pi (GST-pi) is a key enzyme that militates against ROS-mediated apoptosis. We report herein a new construct, EA-BPS, that contains both a brominated BODIPY photosensitizer (BPS) and an ethacrynic acid (EA) GST-pi inhibitor. Photoirradiation of EA-BPS induces a synergistic antitumor effect that results from the combination of ROS production and GST-pi inhibition. Relative to BPS alone, an enhanced cell-killing effect is seen under hypoxic conditions both in vitro and in vivo. We conclude that by making better use of the available oxygen in tumor environments, improved therapeutic PDT outcomes should be achievable even under hypoxic conditions.
Collapse
Affiliation(s)
- Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Korea
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30 C, Chandigarh, 160030, India
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| |
Collapse
|
33
|
Lifshits LM, Roque JA, Cole HD, Thummel RP, Cameron CG, McFarland SA. NIR-Absorbing Ru II Complexes Containing α-Oligothiophenes for Applications in Photodynamic Therapy. Chembiochem 2020; 21:3594-3607. [PMID: 32761725 PMCID: PMC7736147 DOI: 10.1002/cbic.202000419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Indexed: 12/12/2022]
Abstract
The design of near-infrared (NIR)-active photosensitizers (PSs) for light-based cancer treatments such as photodynamic therapy (PDT) has been a challenge. While several NIR-RuII scaffolds have been reported, this approach has not been proven in cells. This is the first report of NIR-RuII PSs that are phototoxic to cancer cells, including highly pigmented B16F10 melanoma cells. The PS family incorporated a bis(1,8-naphthyridine)-based ligand (tpbn), a bidentate thiophene-based ligand (nT; n=0-4), and a monodentate 4-picoline ligand (4-pic). All compounds absorbed light >800 nm with maxima near 730 nm. Transient absorption (TA) measurements indicated that n=4 thiophene rings (4T) positioned the PDT-active triplet intraligand charge transfer (3 ILCT) excited state in energetic proximity to the lowest-lying triplet metal-to-ligand charge transfer (3 MLCT). 4T had low-micromolar phototoxicity with PIvis and PI733nm values as large as 90 and 12, respectively. Spectroscopic studies suggested that the longer-lived (τTA =3-6 μs) 3 ILCT state was accessible from the 3 MLCT state, but energetically uphill in the overall photophysics. The study highlights that phototoxic effects can be achieved with NIR-absorbing RuII PSs as long as the reactive 3 ILCT states are energetically accessible from the low-energy 3 MLCT states. It also demonstrates that tissue-penetrating NIR light can be used to activate the PSs in highly pigmented cells where melanin attenuates shorter wavelengths of light.
Collapse
Affiliation(s)
- Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Randolph P. Thummel
- Department of Chemistry, University of Houston, 112 Fleming Building, Houston, Texas, 77204-5003, USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
34
|
Roque JA, Barrett PC, Cole HD, Lifshits LM, Bradner E, Shi G, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorg Chem 2020; 59:16341-16360. [PMID: 33126792 PMCID: PMC7669743 DOI: 10.1021/acs.inorgchem.0c02137] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypoxia presents a challenge to anticancer therapy, reducing the efficacy of many available treatments. Photodynamic therapy is particularly susceptible to hypoxia, given that its mechanism relies on oxygen. Herein, we introduce two new osmium-based polypyridyl photosensitizers that are active in hypoxia. The lead compounds emerged from a systematic study of two Os(II) polypyridyl families derived from 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmb) as coligands combined with imidazo[4,5-f][1,10]phenanthroline ligands tethered to n = 0-4 thiophenes (IP-nT). The compounds were characterized and investigated for their spectroscopic and (photo)biological activities. The two hypoxia-active Os(II) photosensitizers had n = 4 thiophenes, with the bpy analogue 1-4T being the most potent. In normoxia, 1-4T had low nanomolar activity (half-maximal effective concentration (EC50) = 1-13 nM) with phototherapeutic indices (PI) ranging from 5500 to 55 000 with red and visible light, respectively. A sub-micromolar potency was maintained even in hypoxia (1% O2), with light EC50 and PI values of 732-812 nM and 68-76, respectively -currently among the largest PIs for hypoxic photoactivity. This high degree of activity coincided with a low-energy, long-lived (0.98-3.6 μs) mixed-character intraligand charge-transfer (3ILCT)/ligand-to-ligand charge-transfer (3LLCT) state only accessible in quaterthiophene complexes 1-4T and 2-4T. The coligand identity strongly influenced the photophysical and photobiological results in this study, whereby the bpy coligand led to longer lifetimes (3.6 μs) and more potent photo-cytotoxicity relative to those of dmb. The unactivated compounds were relatively nontoxic both in vitro and in vivo. The maximum tolerated dose for 1-4T and 2-4T in mice was greater than or equal to 200 mg kg-1, an excellent starting point for future in vivo validation.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Evan Bradner
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Ge Shi
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 1×5, Canada
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina, 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019 USA
| |
Collapse
|
35
|
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020; 63:14119-14150. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early cancer detection and perfect understanding of the disease are imperative toward efficient treatments. It is straightforward that, for choosing a specific cancer treatment methodology, diagnostic agents undertake a critical role. Imaging is an extremely intriguing tool since it assumes a follow up to treatments to survey the accomplishment of the treatment and to recognize any conceivable repeating injuries. It also permits analysis of the disease, as well as to pursue treatment and monitor the possible changes that happen on the tumor. Likewise, it allows screening the adequacy of treatment and visualizing the state of the tumor. Additionally, when the treatment is finished, observing the patient is imperative to evaluate the treatment methodology and adjust the treatment if necessary. The goal of this review is to present an overview of conjugated photosensitizers for imaging and therapy.
Collapse
Affiliation(s)
- João C S Simões
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.,BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | - Sophia Sarpaki
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - George Loudos
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| |
Collapse
|
36
|
Roque JA, Barrett PC, Cole HD, Lifshits LM, Shi G, Monro S, von Dohlen D, Kim S, Russo N, Deep G, Cameron CG, Alberto ME, McFarland SA. Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chem Sci 2020; 11:9784-9806. [PMID: 33738085 PMCID: PMC7953430 DOI: 10.1039/d0sc03008b] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hypoxia presents a two-fold challenge in the treatment of cancer, as low oxygen conditions induce biological changes that make malignant tissues simultaneously more aggressive and less susceptible to standard chemotherapy. This paper reports the first metal-based photosensitizer that approaches the ideal properties for a phototherapy agent. The Os(phen)2-based scaffold was combined with a series of IP-nT ligands, where phen = 1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings. Os-4T (n = 4) emerged as the most promising complex in the series, with picomolar activity and a phototherapeutic index (PI) exceeding 106 in normoxia. The photosensitizer exhibited an unprecedented PI > 90 (EC50 = 0.651 μM) in hypoxia (1% O2) with visible and green light, and a PI > 70 with red light. Os-4T was also active with 733 nm near-infrared light (EC50 = 0.803 μM, PI = 77) under normoxia. Both computation and spectroscopic studies confirmed a switch in the nature of the lowest-lying triplet excited state from triplet metal-to-ligand charge transfer (3MLCT) to intraligand charge transfer (3ILCT) at n = 3, with a lower energy and longer lifetime for n = 4. All compounds in the series were relatively nontoxic in the dark but became increasingly phototoxic with additional thiophenes. These normoxic and hypoxic activities are the largest reported to date, demonstrating the utility of osmium for phototherapy applications. Moreover, Os-4T had a maximum tolerated dose (MTD) in mice that was >200 mg kg-1, which positions this photosensitizer as an excellent candidate for in vivo applications.
Collapse
Affiliation(s)
- John A Roque
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Patrick C Barrett
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
| | - Houston D Cole
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Liubov M Lifshits
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Ge Shi
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| | - Susan Monro
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| | - David von Dohlen
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
| | - Susy Kim
- Department of Cancer Biology , Wake Forest School of Medicine , Winston Salem , NC , 27157, USA
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Arcavacata di Rende , 87036 Italy .
| | - Gagan Deep
- Department of Cancer Biology , Wake Forest School of Medicine , Winston Salem , NC , 27157, USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
| | - Marta E Alberto
- Dipartimento di Chimica e Tecnologie Chimiche , Università della Calabria , Arcavacata di Rende , 87036 Italy .
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , Greensboro , North Carolina , 27402 USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , Arlington , Texas , 76019 USA . ;
- Department of Chemistry , Acadia University , Wolfville , Nova Scotia , B4P 2R6 Canada
| |
Collapse
|
37
|
Garcez AS, Kaplan M, Jensen GJ, Scheidt FR, Oliveira EM, Suzuki SS. Effects of antimicrobial photodynamic therapy on antibiotic-resistant Escherichia coli. Photodiagnosis Photodyn Ther 2020; 32:102029. [PMID: 32980553 DOI: 10.1016/j.pdpdt.2020.102029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/07/2023]
Abstract
This study used Electron Cryo-tomography (ECT) and fluorescent images to evaluate antimicrobial photodynamic therapy (aPDT) on the envelope architecture of a Gram-negative bacteria and the effects of combined therapy of aPDT and antibiotics. Standard and clinical suspension of Escherichia coli were submitted to photodynamic treatment with methylene blue solution (100μM) and a 100 mW LED emitting at 660 nm with 3 and 18 J of energy. As a control group, a suspension of E. coli was submitted to penicillin V for 60 min at 30 °C, to compare the damage in cell wall structure. After treatment, ECT images were collected and E. coli biofilms were grown in glass-cover slides and stained with live/dead staining for fluorescence analysis before and after treatments. Bacteria were also submitted to disc diffusion and MIC50 tests with Ampicillin, Amoxicillin + Clavulanic acid, Clindamycin and Erythromycin. For in vivo experiment Galleria mellonella larvae were infected with E. coli and treated with antibiotics, aPDT or combined therapy. ECT images presented damage to cell walls and vesicles structures inside and outside the bacteria and fluorescent images showed dose dependent effect of aPDT. Antibiotic or aPDT alone did not improve the survival of caterpillars, but the combined therapy significantly increased survival curve. ECT and fluorescent images shows that aPDT seems to promote micro-damages to cell envelope and causes the production of membrane vesicles permeabilizing cell membranes. The results showed that pre-treating bacterial cells with a photosensitizer and light make them more susceptible to antibiotics and could be an alternative to local infection treatment by resistant bacteria.
Collapse
Affiliation(s)
- Aguinaldo S Garcez
- Department of oral Microbiology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil.
| | - Mohammed Kaplan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, USA
| | - Fábio R Scheidt
- Department of oral Microbiology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Eduardo M Oliveira
- Department of oral Microbiology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| | - Selly S Suzuki
- Department of oral Microbiology, São Leopoldo Mandic Institute and Research Center, Campinas, Brazil
| |
Collapse
|
38
|
Lifshits LM, Roque Iii JA, Konda P, Monro S, Cole HD, von Dohlen D, Kim S, Deep G, Thummel RP, Cameron CG, Gujar S, McFarland SA. Near-infrared absorbing Ru(ii) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chem Sci 2020; 11:11740-11762. [PMID: 33976756 PMCID: PMC8108386 DOI: 10.1039/d0sc03875j] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mounting evidence over the past 20 years suggests that photodynamic therapy (PDT), an anticancer modality known mostly as a local treatment, has the capacity to invoke a systemic antitumor immune response, leading to protection against tumor recurrence. For aggressive cancers such as melanoma, where chemotherapy and radiotherapy are ineffective, immunomodulating PDT as an adjuvant to surgery is of interest. Towards the development of specialized photosensitizers (PSs) for treating pigmented melanomas, nine new near-infrared (NIR) absorbing PSs based on a Ru(ii) tris-heteroleptic scaffold [Ru(NNN)(NN)(L)]Cln, were explored. Compounds 2, 6, and 9 exhibited high potency toward melanoma cells, with visible EC50 values as low as 0.292–0.602 μM and PIs as high as 156–360. Single-micromolar phototoxicity was obtained with NIR-light (733 nm) with PIs up to 71. The common feature of these lead NIR PSs was an accessible low-energy triplet intraligand (3IL) excited state for high singlet oxygen (1O2) quantum yields (69–93%), which was only possible when the photosensitizing 3IL states were lower in energy than the lowest triplet metal-to-ligand charge transfer (3MLCT) excited states that typically govern Ru(ii) polypyridyl photophysics. PDT treatment with 2 elicited a pro-inflammatory response alongside immunogenic cell death in mouse B16F10 melanoma cells and proved safe for in vivo administration (maximum tolerated dose = 50 mg kg−1). Female and male mice vaccinated with B16F10 cells that were PDT-treated with 2 and challenged with live B16F10 cells exhibited 80 and 55% protection from tumor growth, respectively, leading to significantly improved survival and excellent hazard ratios of ≤0.2. Ru(ii) photosensitizers (PSs) destroy aggressive melanoma cells, triggering an immune response that leads to protection against tumor challenge and mouse survival.![]()
Collapse
Affiliation(s)
- Liubov M Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - John A Roque Iii
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA .,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada
| | - Susan Monro
- Department of Chemistry, Acadia University Wolfville Nova Scotia B4P 2R6 Canada
| | - Houston D Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston 112 Fleming Building Houston Texas 77204-5003 USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada .,Department of Pathology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Department of Biology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Beatrice Hunter Cancer Research Institute Halifax Nova Scotia B3H 4R2 Canada
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| |
Collapse
|
39
|
Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging technologies for local cancer treatment. ADVANCED THERAPEUTICS 2020; 3:2000027. [PMID: 33072860 PMCID: PMC7567411 DOI: 10.1002/adtp.202000027] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Abstract
The fundamental limitations of systemic therapeutic administration have prompted the development of local drug delivery platforms as a solution to increase effectiveness and reduce side effects. By confining therapeutics to the site of disease, local delivery technologies can enhance therapeutic index. This review highlights recent advances and opportunities in local drug delivery strategies for cancer treatment in addition to challenges that need to be addressed to facilitate clinical translation. The benefits of local cancer treatment combined with technological advancements and increased understanding of the tumor microenvironment, present a prime breakthrough opportunity for safer and more effective therapies.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
| | - Jeremy Ho
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- School of Medicine, Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mauro Ferrari
- University of Washington, Box 357630, H375 Health Science Building, Seattle, WA, 98195, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
40
|
Cogno IS, Gilardi P, Comini L, Núñez-Montoya SC, Cabrera JL, Rivarola VA. Natural photosensitizers in photodynamic therapy: In vitro activity against monolayers and spheroids of human colorectal adenocarcinoma SW480 cells. Photodiagnosis Photodyn Ther 2020; 31:101852. [PMID: 32585403 DOI: 10.1016/j.pdpdt.2020.101852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
Photodynamic Therapy (PDT), is a treatment option for cancer.It involves the photochemical interaction of light, photosensitizer (PS) and molecular oxygen to produce radical species as well as singlet oxygen which induce cell death. Anthraquinones (AQs) have been extensively studied with respect to their UV/Vis absorption characteristics and their photosensitizing properties in photodynamic reactions. We study the photoactivity of different natural AQs (Parietin, Soranjidiol and Rubiadin) in treating monolayers and multicellular tumor spheroids (MCTSs). Rubiadin and soranjidiol were isolated and purified from the stem and leaves of Heterophyllae pustulata, and PTN was from the liquen Teloschistes flavicans by using repeated combination of several chromatographic techniques. Monolayer and spheroids of human colorectal adenocarcinoma SW480 cells were incubated with different concentrations of the AQs and then irradiated at room temperature. 24 h post-PDT cell viability, nuclear morphology and type of cell death were analyzed. We observed that Soranjidiol and Rubiadin showed no significant difference in the photosensitizing ability on monoculture of colon cancer cells (LD80 at 50 μM and 10 J/cm2, for both AQs). Nevertheless, for Parietin (PTN) LD80 was achieved at (20 μM using the same light dose (10 J/cm2). The death mechanism induced post-PDT was necrosis by use of Soranjidol and Rubiadin and apoptosis by use of PTN. Furthermore, in MCTSs of 300 and 900 μm, the treatment PTN- PDT produces the greatest cytotoxic effect. The three AQs analyzed could be promising chemotherapeutic candidates as anticancer PDT agents.
Collapse
Affiliation(s)
- Ingrid Sol Cogno
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP 5800 Río Cuarto, Córdoba, Argentina.
| | - Pamela Gilardi
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP 5800 Río Cuarto, Córdoba, Argentina
| | - Laura Comini
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Haya de la Torre y Medina Allende, Ciudad Universitaria. X5000HUA Córdoba, Argentina; Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba, Argentina
| | - Susana C Núñez-Montoya
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas. Haya de la Torre y Medina Allende, Ciudad Universitaria. X5000HUA Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Av. Vélez Sarsfield 1666, CP: X5016GCN Córdoba, Argentina
| | - Jose Luis Cabrera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Av. Vélez Sarsfield 1666, CP: X5016GCN Córdoba, Argentina
| | - Viviana Alicia Rivarola
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP 5800 Río Cuarto, Córdoba, Argentina
| |
Collapse
|
41
|
Zhao L, Li J, Su Y, Yang L, Chen L, Qiang L, Wang Y, Xiang H, Tham HP, Peng J, Zhao Y. MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. SCIENCE ADVANCES 2020; 6:eaaz0575. [PMID: 32181355 PMCID: PMC7056313 DOI: 10.1126/sciadv.aaz0575] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/10/2019] [Indexed: 05/23/2023]
Abstract
Although photodynamic therapy (PDT) has been clinically applied tumor hypoxia still greatly restricts the performance of this oxygen-dependent oncological treatment. The delivery of oxygen donors to tumor may produce excessive reactive oxygen species (ROS) and damage the peripheral tissues. Herein, we developed a strategy to solve the hypoxia issue by enhancing the lethality of ROS. Before PDT, the ROS-defensing system of the cancer cells was obstructed by an inhibitor to MTH1, which is a key for the remediation of ROS-caused DNA damage. As a result, both nuclei and mitochondrial DNA damages were increased, remarkably promoting cellular apoptosis. The therapeutic results demonstrated that the performance of PDT can be improved by the MTH1 inhibitor, leading to efficient cancer cell killing effect in the hypoxic tumor. This strategy makes better use of the limited oxygen, holding the promise to achieve satisfactory therapeutic effect by PDT without generating redundant cytotoxic ROS.
Collapse
Affiliation(s)
- Lingzhi Zhao
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Junyao Li
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yaoquan Su
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Liqiang Yang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Liu Chen
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lei Qiang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yajing Wang
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huijing Xiang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Huijun Phoebe Tham
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Juanjuan Peng
- State Key Laboratory of Natural Medicine, The School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
42
|
Gaio E, Conte C, Esposito D, Reddi E, Quaglia F, Moret F. CD44 Targeting Mediated by Polymeric Nanoparticles and Combination of Chlorine TPCS 2a-PDT and Docetaxel-Chemotherapy for Efficient Killing of Breast Differentiated and Stem Cancer Cells In Vitro. Cancers (Basel) 2020; 12:E278. [PMID: 31979218 PMCID: PMC7072409 DOI: 10.3390/cancers12020278] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
The presence of rare but highly tumorigenic cancer stem cells (CSCs) within the tumors is recognized as one of the major reasons of failure of conventional chemotherapies, mainly attributed to the development of drug resistance and increasing metastatic potential. Here, we propose a therapeutic strategy based on the simultaneous delivery of docetaxel (DTX) and the photosensitizer meso-tetraphenyl chlorine disulfonate (TPCS2a) using hyaluronic acid (HA) coated polymeric nanoparticles (HA-NPs) for the targeting and killing of CD44 over-expressing breast cancer (BC) cells, both differentiated and CSCs (CD44high/CD24low population), thus combining chemotherapy and photodynamic therapy (PDT). Using the CD44high MDA-MB-231 and the CD44low MCF-7 cells, we demonstrated the occurrence of CD44-mediated uptake of HA-NPs both in monolayers and mammosphere cultures enriched in CSCs. Cell treatments showed that combination therapy using co-loaded NPs (HA@DTX/TPCS2a-NPs) had superior efficacy over monotherapies (HA@DTX-NPs or HA@TPCS2a-NPs) in reducing the self-renewal capacity, measured as mammosphere formation efficiency, and in eradicating the CSC population evaluated with aldehyde dehydrogenase activity assay and CD44/CD24 immunostaining. In summary, these in vitro studies demonstrated for the first time the potential of the combination of DTX-chemotherapy and TPCS2a-PDT for killing CSCs using properly designed NPs.
Collapse
Affiliation(s)
- Elisa Gaio
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Elena Reddi
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy; (C.C.); (D.E.); (F.Q.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35121 Padova, Italy; (E.G.); (E.R.)
| |
Collapse
|
43
|
Chepurna OM, Yakovliev A, Ziniuk R, Nikolaeva OA, Levchenko SM, Xu H, Losytskyy MY, Bricks JL, Slominskii YL, Vretik LO, Qu J, Ohulchanskyy TY. Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions. J Nanobiotechnology 2020; 18:19. [PMID: 31973717 PMCID: PMC6979398 DOI: 10.1186/s12951-020-0572-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Biodistribution of photosensitizer (PS) in photodynamic therapy (PDT) can be assessed by fluorescence imaging that visualizes the accumulation of PS in malignant tissue prior to PDT. At the same time, excitation of the PS during an assessment of its biodistribution results in premature photobleaching and can cause toxicity to healthy tissues. Combination of PS with a separate fluorescent moiety, which can be excited apart from PS activation, provides a possibility for fluorescence imaging (FI) guided delivery of PS to cancer site, followed by PDT. RESULTS In this work, we report nanoformulations (NFs) of core-shell polymeric nanoparticles (NPs) co-loaded with PS [2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a, HPPH] and near infrared fluorescent organic dyes (NIRFDs) that can be excited in the first or second near-infrared windows of tissue optical transparency (NIR-I, ~ 700-950 nm and NIR-II, ~ 1000-1350 nm), where HPPH does not absorb and emit. After addition to nanoparticle suspensions, PS and NIRFDs are entrapped by the nanoparticle shell of co-polymer of N-isopropylacrylamide and acrylamide [poly(NIPAM-co-AA)], while do not bind with the polystyrene (polySt) core alone. Loading of the NIRFD and PS to the NPs shell precludes aggregation of these hydrophobic molecules in water, preventing fluorescence quenching and reduction of singlet oxygen generation. Moreover, shift of the absorption of NIRFD to longer wavelengths was found to strongly reduce an efficiency of the electronic excitation energy transfer between PS and NIRFD, increasing the efficacy of PDT with PS-NIRFD combination. As a result, use of the NFs of PS and NIR-II NIRFD enables fluorescence imaging guided PDT, as it was shown by confocal microscopy and PDT of the cancer cells in vitro. In vivo studies with subcutaneously tumored mice demonstrated a possibility to image biodistribution of tumor targeted NFs both using HPPH fluorescence with conventional imaging camera sensitive in visible and NIR-I ranges (~ 400-750 nm) and imaging camera for short-wave infrared (SWIR) region (~ 1000-1700 nm), which was recently shown to be beneficial for in vivo optical imaging. CONCLUSIONS A combination of PS with fluorescence in visible and NIR-I spectral ranges and, NIR-II fluorescent dye allowed us to obtain PS nanoformulation promising for see-and-treat PDT guided with visible-NIR-SWIR fluorescence imaging.
Collapse
Affiliation(s)
- O M Chepurna
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - A Yakovliev
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - R Ziniuk
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - O A Nikolaeva
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - S M Levchenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - H Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - M Y Losytskyy
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - J L Bricks
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, 02094, Ukraine
| | - Yu L Slominskii
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, 02094, Ukraine
| | - L O Vretik
- Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine.
| | - J Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - T Y Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
44
|
McFarland SA, Mandel A, Dumoulin-White R, Gasser G. Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology? Curr Opin Chem Biol 2019; 56:23-27. [PMID: 31759225 DOI: 10.1016/j.cbpa.2019.10.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) is an approved medical technique to treat certain forms of cancer. It has been used to complement traditional anticancer modalities such as surgery, chemotherapy or radiotherapy, and in certain cases, to replace these treatments. One critical parameter of PDT is the photosensitizer (PS); historically, a purely organic macrocyclic tetrapyrrole-based structure. This short review surveys two recent clinical examples of metal complexes, namely TOOKAD®-Soluble and TLD-1433, which have ideal photophysical properties to act as PDT PSs. We highlight the important role played by the metal ions in the PS for PDT activity.
Collapse
Affiliation(s)
- Sherri A McFarland
- The University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX 76019-0065, USA; The University of North Carolina at Greensboro, Department of Chemistry and Biochemistry, Greensboro, NC 27402-6170, USA.
| | - Arkady Mandel
- Theralase Technologies Inc., Toronto, Ontario, Canada
| | | | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.
| |
Collapse
|
45
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
46
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
47
|
Li Y, Xu Y, Peng X, Huang J, Yang M, Wang X. A Novel Photosensitizer Znln 2S 4 Mediated Photodynamic Therapy Induced-HepG2 Cell Apoptosis. Radiat Res 2019; 192:422-430. [PMID: 31390309 DOI: 10.1667/rr15389.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Photodynamic therapy (PDT) uses a combination of photosensitizers with visible light to generate reactive species and selectively kill tumor or unwanted tissue. Znln2S4 nanoparticles are widely implemented in photovoltaic device materials and photolysis water catalysts owing to their unique photoelectric properties. Whether Znln2S4 itself can be used as an effective dye in PDT is still unknown. To determine the effects and potential mechanism of Znln2S4PDT on HepG2 cell apoptosis, electron microscopic analysis was performed to monitor the apoptotic morphology of HepG2 cells upon exposure to Znln2S4-PDT. Flow cytometry was performed to measure the apoptosis rate and intracellular ROS production. Western blot and ELISA were performed to reveal the expression changes in Bax, caspase-3 and caspase-9. Data from this work suggested that cells exhibited the typical apoptotic morphology in response to Znln2S4-PDT, with high apoptotic rate. The intracellular ROS production after Znln2S4-PDT occurred in a dose-dependent manner. Moreover, Znln2S4-PDT augmented the expression levels of pro-apoptosis factors, especially, Bax, caspase-3 and caspase-9. Taken together, our novel findings, Znln2S4-PDT elicited HepG2 cell apoptosis, suggesting Znln2S4 as a promising photosensitizer candidate for cancer therapy.
Collapse
Affiliation(s)
- Yongfa Li
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Yanhua Xu
- Department of Oncology, Jingzhou Central Hospital, Jingzhou, Hubei, China
| | - Xiaochun Peng
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, Hubei, China.,Department of Biochemistry and Molecular Biology, The Second School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Jangrong Huang
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, Hubei, China.,Department of Biochemistry and Molecular Biology, The Second School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Minquan Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 117583, Singapore, Singapore
| | - Xianwang Wang
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, Hubei, China.,Department of Biochemistry and Molecular Biology, The Second School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| |
Collapse
|
48
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Wang YY, Huang JL, Yin XX. A Novel Role of Connexin 40-Formed Channels in the Enhanced Efficacy of Photodynamic Therapy. Front Oncol 2019; 9:595. [PMID: 31338328 PMCID: PMC6629863 DOI: 10.3389/fonc.2019.00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Despite responses to initial treatment of photodynamic therapy (PDT) being promising, a recurrence rate exists. Thus, finding novel therapeutic targets to enhance PDT efficacy is an urgent need. Reports indicate that connexin (Cx) 40 plays an important role in tumor angiogenesis and growth. However, it is unknown whether Cx40-composed channels have effects on PDT efficacy. The study uniquely demonstrated that Cx40-formed channels could enhance the phototoxicity of PDT to malignant cells in vitro and in vivo. Specifically, Cx40-formed channels at high cell density could increase PDT photocytotoxicity. This action was substantially restricted when Cx40 expression was not induced or Cx40 channels were restrained. Additionally, the presence of Cx40-composed channels enhanced the phototoxicity of PDT in the tumor xenografts. The above results indicate that enhancing the function of Cx40-formed channels increases PDT efficacy. The enhancement of PDT efficacy mediated by Cx40 channels was related with intracellular pathways mediated by ROS and calcium pathways, but not the lipid peroxide-mediated pathway. This work demonstrates the capacity of Cx40-mediated channels to increase PDT efficacy and suggests that therapeutic strategies designed to maintain or enhance Cx40 expression and/or channels composed by Cx40 may increase the therapeutic efficacy of PDT.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Li-Ru Bai
- Department of Pharmacy, Wuxi Ninth Affiliated Hospital of Suzhou University, Wuxi, China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Si-Man Yang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuan-Yuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
49
|
Liu H, Liu Y, Wang L, Ruan X, Wang F, Xu D, Zhang J, Jia X, Liu D. Evaluation on Short-Term Therapeutic Effect of 2 Porphyrin Photosensitizer-Mediated Photodynamic Therapy for Esophageal Cancer. Technol Cancer Res Treat 2019; 18:1533033819831989. [PMID: 30885065 PMCID: PMC6425523 DOI: 10.1177/1533033819831989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose: To analyze and study the short-term therapeutic effects and main adverse effects of 2 Porphyrin photosensitizer-mediated photodynamic therapy for esophageal cancer. Methods: We apply the hematoporphyrin derivative and hematoporphyrin injection produced by different manufacturers at different periods as photosensitizers in therapy of 79 esophageal cancer cases, with the administration dosage of 5 mg/kg and intravenous drip 24 hours before irradiation. We apply the gold vapor laser and semiconductor laser, respectively, as treatment light source, with the power density of 100 to 300 mW/cm2 and energy density of 100 to 300 J/cm2. After treatment for 1 to 4 sessions, we evaluate the short-term therapeutic effects as complete response, partial response, minor response, or no change, and then make comparative study on therapeutic effects and adverse effects. Results: There were 47 patients in hematoporphyrin derivative group, including 3 (6.4%) patients with complete response, 31 (66.0%) patients with partial response, 10 (21.3%) patients with minor response, and 3 (6.4%) patients with no change. The dysphagia score was reduced from 2.53 (1.16) before treatment to 1.32 (1.20; P < .01) after treatment. There were 32 patients in the hematoporphyrin injection group, including 3 (9.4%) patients with complete response, 19 (59.4%) patients with partial response, 6 (18.8%) patients with minor response, and 4 (12.5%) patients with no change. The dysphagia score was reduced from 2.41 (1.13) before treatment to 1.18 (0.99; P < .01) after treatment. The dysphagia scores of 2 groups after treatment were significantly reduced compared to those before treatment. Both groups did not display serious adverse effect. Conclusions: Two porphyrin photosensitizers in treatment of esophageal cancer at different clinical stages all had good effect with similar therapeutic effect, mild adverse effect, and good tolerance, which implies it is a preferable palliative therapy means.
Collapse
Affiliation(s)
- Huilong Liu
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Yanfang Liu
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Li Wang
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Xinjian Ruan
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Fei Wang
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Dandan Xu
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Jing Zhang
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Xiaoyan Jia
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| | - Duanqi Liu
- 1 Department of Oncology, The PLA Army General Hospital, Beijing, China
| |
Collapse
|
50
|
Photophysical properties and in vitro photocytotoxicity of disodium salt 2.4-di(alpha-methoxyethyl)-deuteroporphyrin-IX (Dimegine). Photodiagnosis Photodyn Ther 2019; 25:35-42. [DOI: 10.1016/j.pdpdt.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023]
|