1
|
Hübner F, Blauth S, Leithäuser C, Schreiner R, Siedow N, Vogl TJ. Validating a simulation model for laser-induced thermotherapy using MR thermometry. Int J Hyperthermia 2022; 39:1315-1326. [PMID: 36220179 DOI: 10.1080/02656736.2022.2129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES We want to investigate whether temperature measurements obtained from MR thermometry are accurate and reliable enough to aid the development and validation of simulation models for Laser-induced interstitial thermotherapy (LITT). METHODS Laser-induced interstitial thermotherapy (LITT) is applied to ex-vivo porcine livers. An artificial blood vessel is used to study the cooling effect of large blood vessels in proximity to the ablation zone. The experimental setting is simulated using a model based on partial differential equations (PDEs) for temperature, radiation, and tissue damage. The simulated temperature distributions are compared to temperature data obtained from MR thermometry. RESULTS The overall agreement between measurement and simulation is good for two of our four test cases, while for the remaining cases drift problems with the thermometry data have been an issue. At higher temperatures local deviations between simulation and measurement occur in close proximity to the laser applicator and the vessel. This suggests that certain aspects of the model may need some refinement. CONCLUSION Thermometry data is well-suited for aiding the development of simulations models since it shows where refinements are necessary and enables the validation of such models.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Bazrafshan B, Koujan A, Hübner F, Leithäuser C, Siedow N, Vogl TJ. A thermometry software tool for monitoring laser-induced interstitial thermotherapy. ACTA ACUST UNITED AC 2019; 64:449-457. [PMID: 30243013 DOI: 10.1515/bmt-2017-0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/21/2018] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to develop a thermometry software tool for temperature monitoring during laser-induced interstitial thermotherapy (LITT). C++ programming language and several libraries including DICOM Toolkit, Grassroots DICOM library, Insight Segmentation and Registration Toolkit, Visualization Toolkit and Quasar Toolkit were used. The software's graphical user interface creates windows displaying the temperature map and the coagulation extent in the tissue, determined by the magnetic resonance imaging (MRI) thermometry with the echo planar imaging sequence and a numerical simulation based on the radiation and heat transfer in biological tissues, respectively. The software was evaluated applying the MRI-guided LITT to ex vivo pig liver and simultaneously measuring the temperature through a fiber-optic thermometer as reference. Using the software, the temperature distribution determined by the MRI method was compared with the coagulation extent simulation. An agreement was shown between the MRI temperature map and the simulated coagulation extent. Furthermore, the MRI-based and simulated temperatures agreed with the measured one - a correlation coefficient of 0.9993 and 0.9996 was obtained, respectively. The precision of the MRI temperature amounted to 2.4°C. In conclusion, the software tool developed in the present study can be applied for monitoring and controlling the LITT procedure in ex vivo tissues.
Collapse
Affiliation(s)
- Babak Bazrafshan
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany, Phone: +49 69 6301 4793, Fax: +49 69 6301 7258
| | - Ahmad Koujan
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Frank Hübner
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Christian Leithäuser
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM), Fraunhofer-Platz 1, Kaiserslautern 67663, Germany
| | - Norbert Siedow
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM), Fraunhofer-Platz 1, Kaiserslautern 67663, Germany
| | - Thomas J Vogl
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| |
Collapse
|
3
|
Ma T, Chai YC, Zhu HY, Chen H, Wang Y, Li QS, Pang LH, Wu RQ, Lv Y, Dong DH. Effects of Different 980-nm Diode Laser Parameters in Hepatectomy. Lasers Surg Med 2019; 51:720-726. [PMID: 31090100 DOI: 10.1002/lsm.23101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Despite the successful application of laser in animal experiments and clinics, the adjustment of laser parameters during surgery is still unclear. This study aimed to investigate the effect of different 980-nm diode laser parameters in hepatectomy. This could provide a clear protocol for using 980-nm diode laser in hepatectomy. STUDY DESIGN/MATERIALS AND METHODS In total, 48 Sprague-Dawley rats were used to explore the effects of different 980-nm diode laser parameters in hepatectomy, by setting different parameter combinations. The rats were randomly divided into eight groups, including the continuous wave group and quasi-continuous wave group. The effects were assessed in terms of liver resection speed, extent of intraoperative bleeding, and thermal damage. RESULTS In the quasi-continuous wave group, there was a significant difference in resection speed at the different laser parameters (P < 0.001); however, there was no significant difference in intraoperative bleeding and thermal damage. In the continuous wave group, there was a significant difference in resection speed, intraoperative bleeding, and thermal damage at different parameters. CONCLUSION The study showed that the average power determined hemostasis efficiency and thermal damage, and peak power determined the liver resection speed, whereas the pulse width and repetition frequency are not independent factors. When using 980-nm diode laser in hepatectomy, the average power should be decreased to prove hemostasis efficiency in delicate operations, and the peak power should be decreased to accelerate the procedure without worsening thermal damage. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Ma
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi-Chao Chai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Surgical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hao-Yang Zhu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Chen
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yue Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qing-Shan Li
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Hui Pang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ding-Hui Dong
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Allegretti G, Saccomandi P, Giurazza F, Caponero M, Frauenfelder G, Di Matteo F, Beomonte Zobel B, Silvestri S, Schena E. Magnetic resonance-based thermometry during laser ablation on ex-vivo swine pancreas and liver. Med Eng Phys 2015; 37:631-41. [DOI: 10.1016/j.medengphy.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|