1
|
Abstract
The diarylurea is a scaffold of great importance in medicinal chemistry as it is present in numerous heterocyclic compounds with antithrombotic, antimalarial, antibacterial, and anti-inflammatory properties. Some diarylureas, serine-threonine kinase or tyrosine kinase inhibitors, were recently reported in literature. The first to come into the market as an anticancer agent was sorafenib, followed by some others. In this review, we survey progress over the past 10 years in the development of new diarylureas as anticancer agents.
Collapse
|
2
|
Mehta M, Griffith J, Panneerselvam J, Babu A, Mani J, Herman T, Ramesh R, Munshi A. Regorafenib sensitizes human breast cancer cells to radiation by inhibiting multiple kinases and inducing DNA damage. Int J Radiat Biol 2020; 97:1109-1120. [PMID: 32052681 PMCID: PMC7882427 DOI: 10.1080/09553002.2020.1730012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/12/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most challenging and aggressive subtype of breast cancer with limited treatment options because of tumor heterogeneity, lack of druggable targets and therapy resistance. TNBCs are characterized by overexpression of growth factor receptors such as epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet derived growth factor receptor (PDGFR) making them promising therapeutic targets. Regorafenib is an FDA approved oral multi-kinase inhibitor that blocks the activity of multiple protein kinases including those involved in the regulation of tumor angiogenesis [VEGFR1-3, TIE2], tumor microenvironment [PDGFR-β, FGFR] and oncogenesis (KIT, RET, RAF-1, BRAF). In the current study, we examined the radiosensitizing effects of Regorafenib on TNBC cell lines and explored the mechanism by which Regorafenib enhances radiosensitivity. METHODS MDA-MB-231 and SUM159PT (human TNBC cell lines) and MCF 10a (human mammary epithelial cell line) were treated with Regorafenib, ionizing radiation or a combination of both. Following treatment with Regorafenib and radiation we conducted clonogenic assay to determine radiosensitivity, immunoblot analysis to assess the effect on key signaling targets, tube formation to evaluate effect on angiogenesis and comet assay as well as western blot for γH2AX to assess DNA damage response (DDR). RESULTS Regorafenib reduced cell proliferation and enhanced radiosensitivity of MDA-MB-231 and SUM159PT cell lines but had no effect on the MCF 10a cells. Clonogenic survival assays showed that the surviving fraction at 2 Gy for both MDA-MB-231 and SUM159PT was reduced from 66.4 ± 8.9 and 88.2 ± 1.7 in controls to 38.1 ± 4.9 and 75.1 ± 1.1 following a 24 hr pretreatment with 10 μM and 5 μM Regorafenib, respectively. A marked reduction in the expression of VEGFR, PDGFR, EGFR and the downstream target, ERK, was observed with Regorafenib treatment alone or in combination with radiation. We also observed a significant inhibition of VEGF-A production in the TNBC cell lines following treatment with Regorafenib. Further, the addition of conditioned medium from Regorafenib-treated tumor cells onto human umbilical vein endothelial cells (HUVEC) suppressed tube formation, indicating an inhibition of tumor angiogenesis. Regorafenib also decreased migration of TNBC cells and suppressed radiation-induced DNA damage repair in a time-dependent manner. CONCLUSIONS Our findings demonstrate that Regorafenib enhanced radiosensitivity of breast cancer cells by inhibiting the expression of multiple receptor tyrosine kinases, VEGF-mediated angiogenesis and DNA damage response in TNBC. Therefore, combining Regorafenib with radiation and antiangiogenic agents will be beneficial and effective in controlling TNBC.
Collapse
Affiliation(s)
- Meghna Mehta
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James Griffith
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Janani Panneerselvam
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anish Babu
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan Mani
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Terence Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Sadeghian-Rizi S, Khodarahmi GA, Sakhteman A, Jahanian-Najafabadi A, Rostami M, Mirzaei M, Hassanzadeh F. Biological evaluation, docking and molecular dynamic simulation of some novel diaryl urea derivatives bearing quinoxalindione moiety. Res Pharm Sci 2017; 12:500-509. [PMID: 29204178 PMCID: PMC5691576 DOI: 10.4103/1735-5362.217430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study a series of diarylurea derivatives containing quinoxalindione group were biologically evaluated for their cytotoxic activities using MTT assay against MCF-7 and HepG2 cell lines. Antibacterial activities of these compounds were also evaluated by Microplate Alamar Blue Assay (MABA) against three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram-positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast-like fungus (Candida albicans) strain. Furthermore, molecular docking was carried out to study the binding pattern of the compounds to the active site of B-RAF kinase (PDB code: 1UWH). Molecular dynamics simulation was performed on the best ligand (16e) to investigate the ligand binding dynamics in the physiological environment. Cytotoxic evaluation revealed the most prominent cytotoxicity for 6 compounds with IC50 values of 10-18 μM against two mentioned cell lines. None of the synthesized compounds showed significant antimicrobial activity. The obtained results of the molecular docking study showed that all compounds fitted in the binding site of enzyme with binding energy range of -11.22 to -12.69 kcal/mol vs sorafenib binding energy -11.74 kcal/mol as the lead compound. Molecular dynamic simulation indicated that the binding of ligand (16e) was stable in the active site of B-RAF during the simulation.
Collapse
Affiliation(s)
- Sedighe Sadeghian-Rizi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Ghadamali Ali Khodarahmi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Mirzaei
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
4
|
Ke H, Kazi JU, Zhao H, Sun J. Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis. Cell Biosci 2016; 6:55. [PMID: 27777718 PMCID: PMC5070372 DOI: 10.1186/s13578-016-0120-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Somatic mutations of KIT are frequently found in mastocytosis and gastrointestinal stromal tumor (GIST), while germline mutations of KIT are rare, and only found in few cases of familial GIST and mastocytosis. Although ligand-independent activation is the common feature of KIT mutations, the phenotypes mediated by various germline KIT mutations are different. Germline KIT mutations affect different tissues such as interstitial cells of Cajal (ICC), mast cells or melanocytes, and thereby lead to GIST, mastocytosis, or abnormal pigmentation. In this review, we summarize germline KIT mutations in familial mastocytosis and GIST and discuss the possible cellular context dependent transforming activity of KIT mutations.
Collapse
Affiliation(s)
- Hengning Ke
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 People's Republic of China ; Translational Cancer Lab, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hui Zhao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, People's Republic of China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 People's Republic of China ; Division of Translational Cancer Research, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Wang LM, Du BQ, Zuo DZ, Cheng MK, Zhao M, Zhao SJ, Zhai X, Gong P. An efficient and high-yielding protocol for the production of Regorafenib via a new synthetic strategy. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2206-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|