1
|
Zhang Y, Zhu C, Zhang Z, Zhao J, Yuan Y, Wang S. Oxidation triggered formation of polydopamine-modified carboxymethyl cellulose hydrogel for anti-recurrence of tumor. Colloids Surf B Biointerfaces 2021; 207:112025. [PMID: 34403982 DOI: 10.1016/j.colsurfb.2021.112025] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2023]
Abstract
In this research, a hydrogel that combined the tumor photodynamic therapy (PDT) and photothermal therapy (PTT) ability was designed, using dopamine-modified sodium carboxymethyl cellulose (CMC-DA) as the matrix and Chlorin e6 (Ce6) as the photosensitizer. The gel formation was initiated by adding the oxidizing agent sodium periodate (NaIO4) to the CMC-DA solution, during which the dopamine was simultaneously oxidized to polydopamine (PDA) and NaIO4 was reduced to sodium iodide (NaI). The formed NaI was encapsulated in the hydrogel and endowed the hydrogel with computerized tomography (CT) imaging ability to monitor the hydrogel degradation and the tumor therapy process. Moreover, the photosensitizer Ce6 can be loaded by the gel system via directly soaking the hydrogel in the Ce6 solution. Under the near-infrared light irradiation, Ce6 can produce cytotoxic reactive oxygen species and the PDA can produce heat to trigger the tumor PDT and PTT respectively to eradicate the tumor recurrence. In general, the designed hydrogel is biocompatible and biodegradable, has a good photothermal conversion, drug loading and CT imaging ability, which laid the foundation for the rational design of biodegradable hydrogels for multifunctional applications.
Collapse
Affiliation(s)
- Yu Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Chunping Zhu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, No. 168 Dongfang Road, Shanghai, 200433, PR China; Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou, Jiangxi, 341000, PR China
| | - Zhirui Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, No. 168 Dongfang Road, Shanghai, 200433, PR China
| | - Yongkang Yuan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Lin Y, Lu R, Hou J, Zhou GG, Fu W. IFNgamma-inducible CXCL10/CXCR3 axis alters the sensitivity of HEp-2 cells to ionizing radiation. Exp Cell Res 2020; 398:112382. [PMID: 33253709 DOI: 10.1016/j.yexcr.2020.112382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023]
Abstract
Radiotherapy is a conventional approach for anti-cancer treatment, killing tumor cells through damaging cellular DNA. While increasing studies have demonstrated that tumors generated the tolerance to radiation and tumor immune system was found to be correlated to radiotherapy resistance. Therefore, it is critical to identify potential immune factors associated with the efficacy of radiotherapy. Here in this study, we evaluated the sensitivities of different tumor cells to radiation and determined HEp-2 cells as the radio-resistant tumor cells for further investigation. IFNgamma as a key regulator of host immune response showed the potential to sensitize tumors to ionizing radiation (IR). Besides, IFNgamma-induced CXC chemokine ligand 10 (CXCL10) was found to be necessary for effective IR-induced killing of cultured HEp-2 cells. Increased clonogenic survival was observed in CXCL10-depleted HEp-2 cells and CXCL10-KO cells. Additionally, the loss of CXCL10 in HEp-2 cells showed less progression of the G0/G1 phase to G2/M when exposed to IR (8 Gy). Local IR (20 Gy) to nude mice bearing HEp-2 tumors significantly reduced tumor burden, while fewer effects on tumor burden in mice carrying CXCL10-KO tumors were observed. We furtherly evaluated the possible roles the chemokine receptor CXCR3 plays in mediating the sensitivity of cultured HEp-2 cells to IR. Altered expression of CXCR3 in HEp-2 cells affected IR-induced killing of HEp-2 cells. Our data suggest the IFNgamma-activated CXCL10/CXCR3 axis may contribute to the effective radiation-induced killing of HEp-2 cells in vitro.
Collapse
Affiliation(s)
- Yunting Lin
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Jingmei Hou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-tech Park Longhua District, Shenzhen, Guangdong, 518116, China.
| | - Wenmin Fu
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-tech Park Longhua District, Shenzhen, Guangdong, 518116, China.
| |
Collapse
|
3
|
Macià I Garau M. Radiobiology of stereotactic body radiation therapy (SBRT). Rep Pract Oncol Radiother 2017; 22:86-95. [PMID: 28490978 DOI: 10.1016/j.rpor.2017.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 01/19/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022] Open
Abstract
Recent advances in the technology of radiotherapy have enabled the development of new therapeutic modalities that deliver radiation with very high accuracy, reduced margins and high dose conformation, allowing the reduction of healthy tissue irradiated and therefore minimizing the risk of toxicity. The next step was to increase the total tumor dose using conventional fractionation (which remains the best way to relatively radioprotect healthy tissues when large volumes are treated) or to use new fractionation schemes with greater biological effectiveness. Based on the experience gained in radiosurgery, the latter way was chosen for small and well-defined tumors in the body. Stereotactic body radiotherapy delivers high doses of radiation to small and well-defined targets in an extreme hypofractionated (and accelerated) scheme with a very high biological effectiveness obtaining very good initial clinical results in terms of local tumor control and acceptable rate of late complications. In fact, we realize a posteriori that it was not feasible to administer such biologically equivalent dose in a conventional fractionation because the treatment could last several months. So far, these new therapeutic modalities have been developed due to technologic advances in image guidance and treatment delivery but without a solid biological basis. It is the role of traditional radiobiology (and molecular radiobiology) to explain the effects of high doses of ionizing radiation on tumor and normal tissues. Only through a better understanding of how high doses of ionizing radiation act, clinicians will know exactly what we do, allowing us in the future to refine our treatments. This article attempts to describe through simple and understandable concepts the known aspects of the biological action of high doses of radiation on tumor and normal tissues, but it is clear that we need much more basic research to better understand the biology of high doses of radiation.
Collapse
Affiliation(s)
- Miquel Macià I Garau
- Radiation Oncology Department and Translational Research Laboratory, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Catalonia, Spain
| |
Collapse
|
4
|
Combination Treatment with Sublethal Ionizing Radiation and the Proteasome Inhibitor, Bortezomib, Enhances Death-Receptor Mediated Apoptosis and Anti-Tumor Immune Attack. Int J Mol Sci 2015; 16:30405-21. [PMID: 26703577 PMCID: PMC4691179 DOI: 10.3390/ijms161226238] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
Sub-lethal doses of radiation can modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. Proteasome inhibitors demonstrate broad anti-tumor activity in clinical and pre-clinical cancer models. Here, we use a combination treatment of proteasome inhibition and irradiation to further induce immunomodulation of tumor cells that could enhance tumor-specific immune responses. We investigate the effects of the 26S proteasome inhibitor, bortezomib, alone or in combination with radiotherapy, on the expression of immunogenic genes in normal colon and colorectal cancer cell lines. We examined cells for changes in the expression of several death receptors (DR4, DR5 and Fas) commonly used by T cells for killing of target cells. Our results indicate that the combination treatment resulted in increased cell surface expression of death receptors by increasing their transcript levels. The combination treatment further increases the sensitivity of carcinoma cells to apoptosis through FAS and TRAIL receptors but does not change the sensitivity of normal non-malignant epithelial cells. Furthermore, the combination treatment significantly enhances tumor cell killing by tumor specific CD8+ T cells. This study suggests that combining radiotherapy and proteasome inhibition may simultaneously enhance tumor immunogenicity and the induction of antitumor immunity by enhancing tumor-specific T-cell activity.
Collapse
|
5
|
Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Lett 2015; 368:230-7. [DOI: 10.1016/j.canlet.2015.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
|
6
|
Cacan E, Greer SF, Garnett-Benson C. Radiation-induced modulation of immunogenic genes in tumor cells is regulated by both histone deacetylases and DNA methyltransferases. Int J Oncol 2015; 47:2264-75. [PMID: 26458736 DOI: 10.3892/ijo.2015.3192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/16/2015] [Indexed: 11/06/2022] Open
Abstract
Radiation treatment is a pivotal therapy for several cancer types, including colorectal cancer. It has been shown that sublethal doses of radiation modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. We have recently shown that low dose radiation enhances expression of multiple death receptors (Fas, DR4 and DR5) and co-stimulatory molecules (4-1BBL and OX-40L) in colorectal cancer (CRC) cells; however, it is unclear how ionizing radiation (IR) enhances expression of these molecules mechanistically. In the present study, we elucidate the molecular mechanisms by which radiation controls expression of these molecules in CRC. Here we report that, enhanced expression of these genes following radiation treatment of CRC cells is due, in part, to changes in DNA methylation and histone acetylation. We observed that radiation (5 Gy) significantly increased histone acetylation at the promoter regions of 4-1BBL, Fas and DR5 but not OX-40L. However, radiation did not induce changes in the global levels of acetylated histone H3 suggesting specificity of IR-induced changes. Furthermore, evaluation of epigenetic controlling enzymes revealed that IR did not alter overall cellular levels of HDACs (HDAC1, HDAC2 or HDAC3) or DNMTs (DNMT1, DNMT3a, or DNMT3b). Instead, radiation decreased binding of HDAC2 and HDAC3 at the promoter regions of Fas and 4-1BBL, respectively. Radiation also resulted in reduced DNMT1 at both the Fas and 4-1BBL promoter regions but not a control gene. We conclude that single dose radiation can influence the expression of immune response relevant genes in colorectal tumor cells by altering the binding of epigenetic enzymes, and modulating histone acetylation, at specific gene promoters.
Collapse
Affiliation(s)
- Ercan Cacan
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Susanna F Greer
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | |
Collapse
|
7
|
Allison R, Dicker A. Minimizing morbidity in radiation oncology: a special issue from Future Oncology. Future Oncol 2015; 10:2303-5. [PMID: 25525839 DOI: 10.2217/fon.14.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Ron Allison
- 21st Century Oncology, 801 WH Smith Boulevard, Greenville, NC 27834, USA
| | | |
Collapse
|
8
|
Teng F, Kong L, Meng X, Yang J, Yu J. Radiotherapy combined with immune checkpoint blockade immunotherapy: Achievements and challenges. Cancer Lett 2015; 365:23-9. [DOI: 10.1016/j.canlet.2015.05.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/25/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
|