1
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
2
|
Hersi F, Omar HA, Al-Qawasmeh RA, Ahmad Z, Jaber AM, Zaher DM, Al-Tel TH. Design and synthesis of new energy restriction mimetic agents: Potent anti-tumor activities of hybrid motifs of aminothiazoles and coumarins. Sci Rep 2020; 10:2893. [PMID: 32076009 PMCID: PMC7031302 DOI: 10.1038/s41598-020-59685-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
The incidence of obesity-related diseases like diabetes, cardiovascular diseases, and different types of cancers shed light on the importance of dietary control as preventive and treatment measures. However, long-term dietary control is challenging to achieve in most individuals. The use of energy restriction mimetic agents (ERMAs) as an alternative approach to affect the energy machinery of cancer cells has emerged as a promising approach for cancer therapy. ERMAs limit the high need for energy in rapidly growing tumor cells, with their survival rate strongly dependent on the robust availability of energy. In this context, initial phenotypic screening of an in-house pilot compound library identified a new class of aminothiazole anchored on coumarin scaffold as potent anticancer lead drug candidates with potential activity as ERMA. The identified chemotypes were able to inhibit glucose uptake and increase ROS content in cancer cells. Compounds 9b, 9c, 9i, 11b, and 11c were highly active against colorectal cancer cell lines, HCT116 and HT-29, with half-maximal inhibitory concertation (IC50) range from 0.25 to 0.38 µM. Further biological evaluations of 9b and 9f using Western blotting, caspase activity, glucose uptake, ROS production, and NADPH/NADP levels revealed the ability of these lead drug candidates to induce cancer cell death via, at least in part, energy restriction. Moreover, the assessment of 9b and 9f synergistic activity with cisplatin showed promising outcomes. The current work highlights the significant potential of the lead compounds, 9b, and 9f as potential anticancer agents via targeting the cellular energy machinery in cancer cells.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Raed A Al-Qawasmeh
- Department of Chemistry, Faculty of Science, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Zainab Ahmad
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Areej M Jaber
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
3
|
Moon SH, Lee SJ, Jung KH, Quach CHT, Park JW, Lee JH, Cho YS, Lee KH. Troglitazone Stimulates Cancer Cell Uptake of 18F-FDG by Suppressing Mitochondrial Respiration and Augments Sensitivity to Glucose Restriction. J Nucl Med 2015; 57:129-35. [DOI: 10.2967/jnumed.115.162016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/23/2015] [Indexed: 12/23/2022] Open
|