1
|
Bedair NM, Sakr MA, Mourad A, Eissa N, Mostafa A, Khamiss O. Molecular characterization of the whole genome of H9N2 avian influenza virus isolated from Egyptian poultry farms. Arch Virol 2024; 169:99. [PMID: 38625394 PMCID: PMC11021324 DOI: 10.1007/s00705-024-06018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
H9N2 avian influenza viruses (AIVs) affect both poultry and humans on a global level, and they are especially prevalent in Egypt. In this study, we sequenced the entire genome of AIV H9N2 isolated from chickens in Egypt in 2021, using next-generation sequencing (NGS) technology. Phylogenetic analysis of the resulting sequences showed that the studied strain was generally monophyletic and grouped within the G1 sublineage of the Eurasian lineage. Four segments (polymerase basic 2 [PB2], polymerase basic 1 [PB1], polymerase acidic [PA], and non-structural [NS]) were related to Egyptian genotype II, while the nucleoprotein (NP), neuraminidase (NA), matrix (M), and haemagglutinin (HA) segments were related to Egyptian genotype I. Molecular analysis revealed that HA protein contained amino acid residues (191H and 234L) that suggested a predilection for attaching to human-like receptors. The antigenic sites of HA had two nonsynonymous mutations: V194I at antigenic site A and M40K at antigenic site B. Furthermore, the R403W and S372A mutations, which have been observed in H3N2 and H2N2 strains that caused human pandemics, were found in the NA protein of the detected strain. The internal proteins contained virulence markers: 504V in the PB2 protein, 622G, 436Y, 207K, and 677T in the PB1 protein, 127V, 550L, and 672L in PA protein, and 64F and 69P in the M protein. These results show that the detected strain had undergone intrasubtype reassortment. Furthermore, it contains changes in the viral proteins that make it more likely to be virulent, raising a question about the tendency of AIV H9N2 to become highly pathogenic in the future for both poultry and humans.
Collapse
Affiliation(s)
- Nahed M Bedair
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| | - Moustafa A Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt.
| | - Ahmed Mourad
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Nourhan Eissa
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, 12622, Dokki, Giza, Egypt
| | - Omaima Khamiss
- Animal Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat, Egypt
| |
Collapse
|
2
|
Liu T, Xie S, Yang Z, Zha A, Shi Y, Xu L, Chen J, Qi W, Liao M, Jia W. That H9N2 avian influenza viruses circulating in different regions gather in the same live-poultry market poses a potential threat to public health. Front Microbiol 2023; 14:1128286. [PMID: 36876085 PMCID: PMC9979309 DOI: 10.3389/fmicb.2023.1128286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023] Open
Abstract
H9N2 avian influenza viruses are endemic and persistent in China, but those that are prevalent in different provinces are also causes of wide epidemics, related to the spread of wild birds and the cross-regional trade in live poultry. For the past 4 years, beginning in 2018, we have sampled a live-poultry market in Foshan, Guangdong, in this ongoing study. In addition to the prevalence of H9N2 avian influenza viruses in China during this period, we identified isolates from the same market belonging to clade A and clade B, which diverged in 2012-2013, and clade C, which diverged in 2014-2016, respectively. An analysis of population dynamics revealed that, after a critical divergence period from 2014 to 2016, the genetic diversity of H9N2 viruses peaked in 2017. Our spatiotemporal dynamics analysis found that clade A, B, and C, which maintain high rates of evolution, have different prevalence ranges and transmission paths. Clades A and B were mainly prevalent in East China in the early stage, and then spread to Southern China, becoming epidemic with clade C. Strains from different regions converge at the same live-poultry market to communicate, which may be one reasons the H9N2 viruses are difficult to eradicate and increasingly dominant throughout China. Selection pressure and molecular analysis have demonstrated that single amino acid polymorphisms at key receptor binding sites 156, 160, and 190 under positive selection pressure, suggesting that H9N2 viruses are undergoing mutations to adapt to new hosts. Live-poultry markets are important because people who visit them have frequent contact with poultry, H9N2 viruses from different regions converge at these markets and spread through contact between live birds and humans, generating increased risks of human exposure to these viruses and threatening public health safety. Thus, it is important to reducing the cross-regional trade of live poultry and strengthening the monitoring of avian influenza viruses in live-poultry markets to reduce the spread of avian influenza viruses.
Collapse
Affiliation(s)
- Tengfei Liu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shumin Xie
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiyi Yang
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Aimin Zha
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuting Shi
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lingyu Xu
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junhong Chen
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenbao Qi
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Barberis A, Boudaoud A, Gorrill A, Loupias J, Ghram A, Lachheb J, Alloui N, Ducatez MF. Full-length genome sequences of the first H9N2 avian influenza viruses isolated in the Northeast of Algeria. Virol J 2020; 17:108. [PMID: 32680533 PMCID: PMC7366561 DOI: 10.1186/s12985-020-01377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Background H9N2 avian influenza viruses (AIV) has a worldwide geographic distribution and affects poultry of different types of production. H9N2 AIV was first reported in the Northeast of Algeria in April 2017, following an outbreak associated with high mortality, in broiler flocks. In the present study, we report full-length genome sequences of AIV H9N2, and the detailed phylogeny and molecular genetic analyses. Methods Ten AIV H9N2 strains, collected in broiler flocks, were amplified in 9-day-old embryonated specific pathogen free (SPF) chicken eggs. Their full-length genomes were successfully sequenced and phylogenetic and molecular characterizations were conducted. Results Phylogenetic analysis showed that the isolates were monophyletic, grouped within the G-1 lineage and were very close to Moroccan and Algerian strains identified in 2016 and 2017, respectively. The low pathogenicity of the strains was confirmed by the sequence motif (335RSSR/GLF341) at the hemagglutinin (HA) cleavage site. An exclusive substitution (T197A) that had not been previously reported for H9N2 viruses; but, conserved in some pandemic H1N1 viruses, was observed. When compared to the G1-like H9N2 prototype, the studied strains showed one less glycosylation site in HA, but 2–3 additional ones in the stalk of the neuraminidase (NA). The HA protein harbored the substitution 234 L, suggesting binding preference to human-like receptors. The NA protein harbored S372A and R403W substitutions, previously detected in H9N2 from Asia and the Middle East, and especially in H2N2 and H3N2 strains that caused human pandemics. Different molecular markers associated with virulence and mammalian infections have been detected in the viral internal proteins. The matrix M2 protein possessed the S31N substitution associated with drug resistance. The non-structural 1 (NS1) protein showed the “GSEV” PDZ ligand (PL) C-terminal motif and no 80–84 deletion. Conclusion Characterized Algerian AIV isolates showed mutations that suggest increased zoonotic potential. Additional studies in animal models are required to investigate the pathogenicity of these H9N2 AIV strains. Monitoring their evolution in both migratory and domestic birds is crucial to prevent transmission to humans. Implementation of adequate biosecurity measures that limit the introduction and the propagation of AIV H9N2 in Algerian poultry farm is crucial.
Collapse
Affiliation(s)
- Abdelheq Barberis
- Centre de Recherche en Biotechnologie, Nouvelle Ville Ali Mendjeli, El Khroub, Algeria. .,LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria.
| | - Amine Boudaoud
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Angelina Gorrill
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Josianne Loupias
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France
| | - Abdeljelil Ghram
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachheb
- Laboratoire d'Epidémiologie et de Microbiologie Vétérinaire, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Nadir Alloui
- LESPA, Département vétérinaire, ISVSA, Université de Batna, Batna, Algeria
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 Chemin des Capelles, 31076, Toulouse cedex, France.
| |
Collapse
|
4
|
A Global Perspective on H9N2 Avian Influenza Virus. Viruses 2019; 11:v11070620. [PMID: 31284485 PMCID: PMC6669617 DOI: 10.3390/v11070620] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 11/26/2022] Open
Abstract
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in many new regions in recent years. In this review, we examine the current global spread of H9N2 avian influenza viruses as well as their host range, tropism, transmission routes and the risk posed by these viruses to human health.
Collapse
|