1
|
Li Y, Zhu X, You J, Zhang B, Huang X, Jin C. Efficacy of bivalent CEACAM6/4-1BBL genetic vaccine combined with anti-PD1 antibody in MC38 tumor model of mice. Heliyon 2022; 8:e10775. [PMID: 36212004 PMCID: PMC9535276 DOI: 10.1016/j.heliyon.2022.e10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
We used mouse CRC cell line (MC38) to establish a heterotopic mouse model, and applied [89Zr]-labeled PD-L1 antibody KN035 for PET imaging. Attenuated Salmonella typhimurium 3261 was used as an anti-tumor vaccine, and the combined anti-tumor immunotherapy with bivalent genetic vaccine and anti-PD1 antibody Nivolumab was conducted. MicroPET was performed to observe the changes of tumor tissues and expression of PD-L1. We found that the recombinant double-gene plasmids were stably expressed in COS7 cells. Study results showed the combined immunotherapy improved the effectiveness over genetic vaccine alone. This study supports that combination of genetic vaccines and anti-immunocheckpoint immunotherapy can inhibit MC38 tumor growth.
Collapse
Affiliation(s)
| | | | - Jianliang You
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Baonan Zhang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaona Huang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
2
|
Ottaiano A, Petito A, Santorsola M, Gigantino V, Capuozzo M, Fontanella D, Di Franco R, Borzillo V, Buonopane S, Ravo V, Scipilliti E, Totaro G, Serra M, Ametrano G, Penta R, Tatangelo F, Scognamiglio G, Di Mauro A, Di Bonito M, Napolitano M, Scala S, Rea G, Santagata S, Lombardi A, Grimaldi A, Caputo C, Crispo A, Celentano E, De Feo G, Circelli L, Savarese G, Ruggiero R, Perri F, Granata V, Botti G, Caraglia M, Nasti G, Muto P. Prospective Evaluation of Radiotherapy-Induced Immunologic and Genetic Effects in Colorectal Cancer Oligo-Metastatic Patients with Lung-Limited Disease: The PRELUDE-1 Study. Cancers (Basel) 2021; 13:4236. [PMID: 34439390 PMCID: PMC8394588 DOI: 10.3390/cancers13164236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND in recent years, the management of advanced colorectal cancer (CRC) has been greatly improved with integrated strategies including stereotactic radiation therapy (SRT). The administration of SRT has been demonstrated, particularly in oligo-metastatic (om) CRC, to be a safe and effective option. Interestingly, it has been demonstrated that SRT can induce regression of tumors in non-irradiated regions ("abscopal effect") through stimulation of anti-tumor immune effects ("radiation-induced immunity"). We have recently shown that lung-limited omCRC is characterized by regression of tumor clones bearing specific key driver gene mutations. AIMS to assess the genetic evolution on tumor cancer cells induced by SRT in lung-limited omCRC. Secondary objectives included descriptions of the abscopal effect, responses' duration, toxicity, and progression-free survival. A translational research will be performed to evaluate tumor genetic evolution (through liquid biopsies and Next Generation Sequencing), HLA class I repertoire, peripheral immune cells, and cytokine dynamics. METHODS PRELUDE-1 is a prospective translational study. SRT will be administered only to the largest nodule (with a maximum diameter ≤ 25 mm) in omCRC with two or three radiologically evident lesions. The sample size is based on the innovative hypothesis that radiation-induced immunity could induce regression of tumor clones bearing KRAS oncogene mutations. According to the binomial test, considering the frequency of KRAS mutations and assuming a probability of mutant KRAS→wild type KRAS of p0 = 0.0077, with α = 0.05 and 1-β = 0.60, the final sample size is 25 patients.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- SSD—Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| | - Angela Petito
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Mariachiara Santorsola
- SSD—Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| | - Valerio Gigantino
- Innovalab Scarl, Molecular Biology, Centro Direzionale, Isola A2, 80143 Naples, Italy; (V.G.); (M.C.); (D.F.)
| | - Maurizio Capuozzo
- Innovalab Scarl, Molecular Biology, Centro Direzionale, Isola A2, 80143 Naples, Italy; (V.G.); (M.C.); (D.F.)
| | - Daniela Fontanella
- Innovalab Scarl, Molecular Biology, Centro Direzionale, Isola A2, 80143 Naples, Italy; (V.G.); (M.C.); (D.F.)
| | - Rossella Di Franco
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Valentina Borzillo
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Sergio Buonopane
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Vincenzo Ravo
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Esmeralda Scipilliti
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Giuseppe Totaro
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Marcello Serra
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Gianluca Ametrano
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| | - Roberta Penta
- Oncohaematology Department, A.O.R.N. Santobono-Pausilipon di Napoli, 80123 Naples, Italy;
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Giosuè Scognamiglio
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (F.T.); (G.S.); (A.D.M.); (M.D.B.)
| | - Maria Napolitano
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Giuseppina Rea
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Sara Santagata
- Functional Genomics, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.N.); (S.S.); (G.R.); (S.S.)
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Anna Grimaldi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Carlo Caputo
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Anna Crispo
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.C.); (E.C.)
| | - Egidio Celentano
- Epidemiology and Biostatistics Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.C.); (E.C.)
| | - Gianfranco De Feo
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (G.D.F.); (G.B.)
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (L.C.); (G.S.); (R.R.)
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (L.C.); (G.S.); (R.R.)
| | - Raffaella Ruggiero
- AMES, Centro Polidiagnostico Strumentale srl, 80013 Naples, Italy; (L.C.); (G.S.); (R.R.)
| | - Francesco Perri
- Head&Neck Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Vincenza Granata
- Radiology Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy;
| | - Gerardo Botti
- Scientific Directorate, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (G.D.F.); (G.B.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, via de Crecchio 7, 80138 Naples, Italy; (A.L.); (A.G.); (C.C.); (M.C.)
| | - Guglielmo Nasti
- SSD—Innovative Therapies for Abdominal Metastases Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (M.S.); (G.N.)
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, via M. Semmola, 80131 Naples, Italy; (A.P.); (R.D.F.); (V.B.); (S.B.); (V.R.); (E.S.); (G.T.); (M.S.); (G.A.); (P.M.)
| |
Collapse
|
3
|
Correale P, Saladino RE, Giannarelli D, Giannicola R, Agostino R, Staropoli N, Strangio A, Del Giudice T, Nardone V, Altomonte M, Pastina P, Tini P, Falzea AC, Imbesi N, Arcati V, Romeo G, Caracciolo D, Luce A, Caraglia M, Giordano A, Pirtoli L, Necas A, Amler E, Barbieri V, Tassone P, Tagliaferri P. Distinctive germline expression of class I human leukocyte antigen (HLA) alleles and DRB1 heterozygosis predict the outcome of patients with non-small cell lung cancer receiving PD-1/PD-L1 immune checkpoint blockade. J Immunother Cancer 2021; 8:jitc-2020-000733. [PMID: 32554614 PMCID: PMC7304840 DOI: 10.1136/jitc-2020-000733] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nivolumab is a human monoclonal antibody against programmed cell death receptor-1 (PD-1) able to rescue quiescent tumor infiltrating cytotoxic T lymphocytes (CTLs) restoring their ability to kill target cells expressing specific tumor antigen-derived epitope peptides bound to homologue human leukocyte antigen (HLA) molecules. Nivolumab is currently an active but expensive therapeutic agent for metastatic non-small cell lung cancer (mNSCLC), producing, in some cases, immune-related adverse events (irAEs). At the present, no reliable biomarkers have been validated to predict either treatment response or adverse events in treated patients. METHODS We performed a retrospective multi-institutional analysis including 119 patients with mNSCLC who received PD-1 blockade since November 2015 to investigate the predictive role of germinal class I HLA and DRB1 genotype. We investigated the correlation among patients' outcome and irAEs frequency with specific HLA A, B, C and DRB1 alleles by reverse sequence-specific oligonucleotide (SSO) DNA typing. RESULTS A poor outcome in patients negative for the expression of two most frequent HLA-A alleles was detected (HLA: HLA-A*01 and or A*02; progression-free survival (PFS): 7.5 (2.8 to 12.2) vs 15.9 (0 to 39.2) months, p=0.01). In particular, HLA-A*01-positive patients showed a prolonged PFS of 22.6 (10.2 to 35.0) and overall survival (OS) of 30.8 (7.7 to 53.9) months, respectively. We also reported that HLA-A and DRB1 locus heterozygosis (het) were correlated to a worse OS if we considered het in the locus A; in reverse, long survival was correlated to het in DRB1. CONCLUSIONS This study demonstrate that class I and II HLA allele characterization to define tumor immunogenicity has relevant implications in predicting nivolumab efficacy in mNSCLC and provide the rationale for further prospective trials of cancer immunotherapy.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Rita Emilena Saladino
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | | | - Rocco Giannicola
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Rita Agostino
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Nicoletta Staropoli
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Alessandra Strangio
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Teresa Del Giudice
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Valerio Nardone
- Radiotherapy Unit, "Ospedale del Mare", ASL Napoli 1, Naples, Italy
| | - Maria Altomonte
- Unit of Pharmacy, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Pierpaolo Pastina
- Section of Radiation Oncology, Medical School, University of Siena, Siena, Italy
| | - Paolo Tini
- Section of Radiation Oncology, Medical School, University of Siena, Siena, Italy
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Natale Imbesi
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Valentina Arcati
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Giuseppa Romeo
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Daniele Caracciolo
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy .,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Avellino, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Alois Necas
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Vito Barbieri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Pierosandro Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
4
|
Correale P, Pentimalli F, Baglio G, Krstic-Demonacos M, Saladino RE, Giordano A, Mutti L. Is There Already a Need of Reckoning on Cancer Immunotherapy? Front Pharmacol 2021; 12:638279. [PMID: 33841155 PMCID: PMC8033763 DOI: 10.3389/fphar.2021.638279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Pierpaolo Correale
- Unit of Medical Oncology, Oncology Department, Grand Metropolitan Hospital ‘Bianchi Melacrino Morelli’, Reggio Calabria, Italy
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli, Italy
| | - Giovanni Baglio
- Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, PA, United States
| | - Marjia Krstic-Demonacos
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Rita Emilena Saladino
- Tissue Typing Unit, Grand Metropolitan Hospital ‘Bianchi Melacrino Morelli’, Reggio Calabria, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Immune Checkpoint Expression on Immune Cells of HNSCC Patients and Modulation by Chemo- and Immunotherapy. Int J Mol Sci 2020; 21:ijms21155181. [PMID: 32707816 PMCID: PMC7432918 DOI: 10.3390/ijms21155181] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Endogenous control mechanisms, including immune checkpoints and immunosuppressive cells, are exploited in the process of tumorigenesis to weaken the anti-tumor immune response. Cancer treatment by chemotherapy or immune checkpoint inhibition can lead to changes of checkpoint expression, which influences therapy success. Peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) were isolated from head and neck squamous cell carcinoma (HNSCC) patients (n = 23) and compared to healthy donors (n = 23). Immune checkpoint expression (programmed cell death ligand 1 (PD-1), tumor necrosis factor receptor (TNFR)-related (GITR), CD137, tumor necrosis factor receptor superfamily member 4 (TNFRSF4) (OX40), t-cell immunoglobulin and mucin-domain containing-3 (TIM3), B- and T-lymphocyte attenuator (BTLA), lymphocyte-activation gene 3 (LAG3)) was determined on immune cells by flow cytometry. PD-L1 expression was detected on tumor tissue by immunohistochemistry. Immune cells were treated with immuno- and chemotherapeutics to investigate treatment-specific change in immune checkpoint expression, in vitro. Specific changes of immune checkpoint expression were identified on PBL and TIL of HNSCC patients compared to healthy donors. Various chemotherapeutics acted differently on the expression of immune checkpoints. Changes of checkpoint expression were significantly less pronounced on regulatory T cells compared to other lymphocyte populations. Nivolumab treatment significantly reduced the receptor PD-1 on all analyzed T cell populations, in vitro. The specific immune checkpoint expression patterns in HNSCC patients and the investigated effects of immunomodulatory agents may improve the development and efficacy of targeted immunotherapy.
Collapse
|
6
|
Caraglia M, Correale P, Giannicola R, Staropoli N, Botta C, Pastina P, Nesci A, Caporlingua N, Francini E, Ridolfi L, Mini E, Roviello G, Ciliberto D, Agostino RM, Strangio A, Azzarello D, Nardone V, Falzea A, Cappabianca S, Bocchetti M, D'Arrigo G, Tripepi G, Tassone P, Addeo R, Giordano A, Pirtoli L, Francini G, Tagliaferri P. GOLFIG Chemo-Immunotherapy in Metastatic Colorectal Cancer Patients. A Critical Review on a Long-Lasting Follow-Up. Front Oncol 2019; 9:1102. [PMID: 31781481 PMCID: PMC6857002 DOI: 10.3389/fonc.2019.01102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/07/2019] [Indexed: 01/19/2023] Open
Abstract
Background: GOLFIG is a chemo-immunotherapy regimen established in preclinical models that combines gemcitabine + FOLFOX (fluoropyrimidine backbone coupled to oxaliplatin) poly-chemotherapy with low-dose s. c. recombinant interleukin-2 (rIL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF). Promising antitumor effects in metastatic colorectal cancer (mCRC) patients were obtained in previous phase II and III trials. Here we report the results of 15 years of follow-up. Methods: This is a multi-institutional retrospective analysis including 179 mCRC patients receiving GOLFIG regimen between June 2002 and June 2018. Sixty-two of them received the treatment as frontline (enrolled in the GOLFIG-2 phase III trial) and 117 as second/third line (49 enrolled in the GOLFIG-1 phase II trial and 68 as compassionate use). One hundred twelve patients showed a primary left side and 67 a primary right side; K/N-ras mutational status was available in 74 cases, and an activating mutation was detected in 33. Kaplan-Meier and Cox regression analyses were carried out to relate PFS and OS with different parameters. Results: Overall, we recorded a mean PFS and OS of 15.28 (95% CI: 10.36-20.20) and 24.6 (95% CI: 19.07-30.14) months, respectively, with 14 patients surviving free of progression for 10 years. This regimen, in our updated survey of the GOLFIG-2 trial, confirmed superiority over FOLFOX in terms of PFS (hazard ratio (HR) = 0.58, p = 0.006) with a trend to a longer OS (HR = 0.69, P = 0.06) in the first line. Our analysis also confirmed significant antitumor activity in pre-treated patients, reporting a mean PFS and OS of 12.55 (95% CI: 7.19-17.9) and 20.28 (95% CI: 14.4-26.13) months, respectively. Immune-related adverse events (irAEs) were recorded in 24% of the cases and were related to a longer survival (HR = 0.36; P = 0.0001). Finally, patients' outcome was not correlated to sex, sidedness, and MT-K/N-ras. Conclusions: The GOLFIG regimen is a reliable underestimated therapeutic option in pre-treated mCRC patients and offers a strong rationale to design further trials.
Collapse
Affiliation(s)
- Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Nicoletta Staropoli
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Cirino Botta
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Antonello Nesci
- Unit of Pharmacy, Section of Anti-blastic Drugs, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Nadia Caporlingua
- Unit of Pharmacy, Section of Anti-blastic Drugs, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | | | - Laura Ridolfi
- Immunotherapy, Cell Therapy and Biobank, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Enrico Mini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, School of Medicine/Translational Oncology Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Giandomenico Roviello
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, School of Medicine/Translational Oncology Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Domenico Ciliberto
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Rita Maria Agostino
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Alessandra Strangio
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Domenico Azzarello
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Valerio Nardone
- Radiation Oncology Unit, Siena University Hospital, Siena, Italy
| | - Antonella Falzea
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Graziella D'Arrigo
- Statistical Unit, IFC-CNR (CNR), Grand Metropolitan Hospital-IFC, Reggio Calabria, Italy
| | - Giovanni Tripepi
- Statistical Unit, IFC-CNR (CNR), Grand Metropolitan Hospital-IFC, Reggio Calabria, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Raffaele Addeo
- Oncology Unit, Day Hospital, San Giovanni di Dio Hospital, ASL Napoles 2 Nord, Frattamaggiore, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Guido Francini
- Medical Oncology Unit, Siena University Hospital, Siena, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
7
|
Giannicola R, D'Arrigo G, Botta C, Agostino R, Del Medico P, Falzea AC, Barbieri V, Staropoli N, Del Giudice T, Pastina P, Nardone V, Monoriti M, Calabrese G, Tripepi G, Pirtoli L, Tassone P, Tagliaferri P, Correale P. Early blood rise in auto-antibodies to nuclear and smooth muscle antigens is predictive of prolonged survival and autoimmunity in metastatic-non-small cell lung cancer patients treated with PD-1 immune-check point blockade by nivolumab. Mol Clin Oncol 2019; 11:81-90. [PMID: 31289683 DOI: 10.3892/mco.2019.1859] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Immune-checkpoint blockade by Nivolumab, a human monoclonal antibody to programmed cell death receptor-1, is an emerging treatment for metastatic non-small cell lung cancer (mNSCLC). In order to prolong patient survival, this treatment requires a continuous cross-priming of tumor derived-antigens to supply fresh tumor-specific immune-effectors; a phenomenon that may also trigger auto-immune-related adverse events (irAEs). The present study therefore investigated the prognostic value of multiple autoimmunity-associated parameters in patients with mNSCLC who were undergoing Nivolumab treatment. This retrospective study included 92 mNSCLC patients who received salvage therapy with Nivolumab (3 mg/kg, biweekly) between September 2015 and June 2018. Log-rank test, Mantel-Cox and McPherson analyses were conducted to correlate patient progression-free survival (PFS) and overall survival (OS) with different parameters including blood cell counts, serum inflammatory markers and auto-antibodies (AAbs). A median PFS and OS of 10 [inter-quartile range (IQR): 5.8-14.2] and 16 [IQR: 6.2-25.8] months, respectively, were recorded, which did not correlated with age, histology or the number of previous chemotherapy lines. Male gender, the type of therapeutic regimens received prior to Nivolumab, and the occurrence of irAEs were revealed to be positive predictors of prolonged survival (P<0.05). Early detection (within 30 days) of >1AAbs among anti-nuclear antigens (ANAs), extractable nuclear antigens (ENAs) and anti-smooth cell antigens (ASMAs) correlated with prolonged PFS [hazard ratio (HR)=0.23; 95% confidence interval (CI): 0.08-0.62; P=0.004] and OS [HR=0.28 (95% CI: 0.09-0.88), P=0.03], with the type of treatment received prior to nivolumab (P=0.007) and with the risk of irAEs (P=0.002). In conclusion, increased serum levels of ANA, ENA and/or ASMA are consequential to Nivolumab administration and are predictive of a positive outcome in mNSCLC patients.
Collapse
Affiliation(s)
- Rocco Giannicola
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Graziella D'Arrigo
- Statistical Unit, National Council of Research (CNR), Grand Metropolitan Hospital-IFC, I-89124 Reggio di Calabria, Italy
| | - Cirino Botta
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Rita Agostino
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Pietro Del Medico
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Vito Barbieri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Nicoletta Staropoli
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Teresa Del Giudice
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierpaolo Pastina
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy
| | - Valerio Nardone
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy
| | - Marika Monoriti
- Autoimmunity Laboratory, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Graziella Calabrese
- Radiology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| | - Giovanni Tripepi
- Statistical Unit, National Council of Research (CNR), Grand Metropolitan Hospital-IFC, I-89124 Reggio di Calabria, Italy
| | - Luigi Pirtoli
- Radiation Oncology Unit, Siena University Hospital, I-53100 Siena, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Pierfrancesco Tassone
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy.,Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy.,Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, I-88100 Catanzaro, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, 'Bianchi-Melacrino-Morelli' Grand Metropolitan Hospital, I-89124 Reggio di Calabria, Italy
| |
Collapse
|
8
|
Zhang B, Fang C, Deng D, Xia L. Research progress on common adverse events caused by targeted therapy for colorectal cancer. Oncol Lett 2018; 16:27-33. [PMID: 29928383 PMCID: PMC6006412 DOI: 10.3892/ol.2018.8651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
As targeted drug therapy is increasingly applied in the treatment of colon cancer, understanding and managing the adverse reactions of patients is becoming increasingly important. The present review examines the mechanisms of and adverse reactions to the most commonly used targeted drugs for colon cancer, and discusses methods of coping with these adverse reactions. Approved targeted drugs for metastatic colon cancer include monoclonal antibodies targeting vascular endothelial growth factor (VEGF), including bevacizumab, ziv-aflibercept and regorafenib, and monoclonal antibodies targeting epithelial growth factor receptor (EGFR), including cetuximab and panitumumab. The present review assesses the major adverse effects of these drugs and methods of dealing with reactions to them. VEGF inhibitors primarily result in cardiovascular and kidney problems. Meanwhile, EGFR receptor inhibitors are frequently reported to cause rashes, diarrhea and hypertension, and are reviewed from the point of view of resulting electrolyte disturbances.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Chenyan Fang
- Department of Oncology, The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Dehou Deng
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Liang Xia
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
9
|
Correale P, Botta C, Staropoli N, Nardone V, Pastina P, Ulivieri C, Gandolfo C, Baldari TC, Lazzi S, Ciliberto D, Giannicola R, Fioravanti A, Giordano A, Zappavigna S, Caraglia M, Tassone P, Pirtoli L, Cusi MG, Tagliaferri P. Systemic inflammatory status predict the outcome of k-RAS WT metastatic colorectal cancer patients receiving the thymidylate synthase poly-epitope-peptide anticancer vaccine. Oncotarget 2018; 9:20539-20554. [PMID: 29755670 PMCID: PMC5945541 DOI: 10.18632/oncotarget.24993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
TSPP is an anticancer poly-epitope peptide vaccine to thymidylate synthase, recently investigated in the multi-arm phase Ib TSPP/VAC1 trial. TSPP vaccination induced immune-biological effects and showed antitumor activity in metastatic colorectal cancer (mCRC) patients and other malignancies. Progression-free and overall survival of 41 mCRC patients enrolled in the study correlated with baseline levels of CEA, immune-inflammatory markers (neutrophil/lymphocyte ratio, CRP, ESR, LDH, ENA), IL-4 and with post-treatment change in p-ANCA and CD56dimCD16brightNKs (p < 0.04). A subset of 19 patients with activating k-ras mutations showed a different immune-inflammatory response to TSPP as compared to patients with k-ras/wt and a worse outcome in term of PFS (p = 0.048). In patients with k-ras/mut, inflammatory markers lost their predictive value and their survival directly correlated with the baseline levels of IL17/A over the median value (p = 0.01). These results provide strong hints for the design of further clinical trials aimed to test TSPP vaccination in mCRC patients.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Unit of Medical Oncology, Grand Metropolitan Hospital Bianchi Melacrino Morelli, Reggio-Calabria, Italy
| | - Cirino Botta
- Medical Oncology Unit, AUO Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Nicoletta Staropoli
- Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy
| | - Valerio Nardone
- Unit of Radiotherapy, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | - Pierpaolo Pastina
- Unit of Radiotherapy, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | | | - Claudia Gandolfo
- Microbiology and Virology Unit, Department of Medical Biotechnology, Siena University, Siena, Italy
| | | | - Stefano Lazzi
- Unit of Pathology, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | - Domenico Ciliberto
- Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy
| | - Rocco Giannicola
- Unit of Medical Oncology, Grand Metropolitan Hospital Bianchi Melacrino Morelli, Reggio-Calabria, Italy
| | - Antonella Fioravanti
- Unit of Rheumatology, Department of Clinical Medicine and Immunologic Sciences, University of Siena, Siena, Italy
| | - Antonio Giordano
- Department of Biotechnology, Temple University, Sbarro Foundation, Philadelphia, Pennsylvania, USA
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Michele Caraglia
- Department of Biotechnology, Temple University, Sbarro Foundation, Philadelphia, Pennsylvania, USA.,Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit, AUO Mater Domini, Magna Graecia University, Catanzaro, Italy.,Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy.,Department of Precision Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Luigi Pirtoli
- Unit of Radiotherapy, Department of Surgery, Medicine and Neurological Science, Siena University Hospital, Siena, Italy
| | - Maria Grazia Cusi
- Microbiology and Virology Unit, Department of Medical Biotechnology, Siena University, Siena, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University , Catanzaro, Italy
| |
Collapse
|
10
|
Rossi M, Botta C, Arbitrio M, Grembiale RD, Tagliaferri P, Tassone P. Mouse models of multiple myeloma: technologic platforms and perspectives. Oncotarget 2018; 9:20119-20133. [PMID: 29732008 PMCID: PMC5929451 DOI: 10.18632/oncotarget.24614] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/24/2018] [Indexed: 12/19/2022] Open
Abstract
Murine models of human multiple myeloma (MM) are key tools for the study of disease biology as well as for investigation and selection of novel candidate therapeutics for clinical translation. In the last years, a variety of pre-clinical models have been generated to recapitulate a wide spectrum of biological features of MM. These systems range from spontaneous or transgenic models of murine MM, to subcutaneous or orthothopic xenografts of human MM cell lines in immune compromised animals, to platform allowing the engraftment of primary/bone marrow-dependent MM cells within a human bone marrow milieu to fully recapitulate human disease. Selecting the right model for specific pre-clinical research is essential for the successful completion of investigation. We here review recent and most known pre-clinical murine, transgenic and humanized models of MM, focusing on major advantages and/or weaknesses in the light of different research aims.
Collapse
Affiliation(s)
- Marco Rossi
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Mariamena Arbitrio
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | | | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
11
|
Xu P, Fan W, Zhang Z, Wang J, Wang P, Li Y, Yu M. The Clinicopathological and Prognostic Implications of FoxP3 + Regulatory T Cells in Patients with Colorectal Cancer: A Meta-Analysis. Front Physiol 2017; 8:950. [PMID: 29209232 PMCID: PMC5702298 DOI: 10.3389/fphys.2017.00950] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background and Objective: Forkhead box P3 (FoxP3) is known as the specific marker for regulatory T lymphocytes (Tregs), which are responsible for self-tolerance and disturb the antitumor immunity. However, the prognostic implication of tumor-infiltrating FoxP3+ Tregs in patients with colorectal cancer (CRC) still remains controversial. The aim of this present study was to investigate the prognostic role of FoxP3+ Tregs in CRC through meta-analysis. Methods: PubMed, Embase and Web of Science were searched for relevant articles up to December 12, 2016. Pooled hazard ratio (HR) and 95% confidence interval (CI) were calculated to explore the prognostic value of FoxP3+ Tregs in CRC. Odds ratio (OR) was calculated to investigate the correlation between FoxP3+ Tregs and pathological parameters. Results: A total of 18 studies comprising 3,627 patients with CRC were enrolled in our meta-analysis. The combined HR for FoxP3+ Tregs on cancer-specific survival was 0.70 (95% CI = 0.62-0.80, P < 0.001). High FoxP3+ Tregs level was also associated with favorable prognosis on overall survival (HR = 0.76, 95% CI = 0.58-1.01, P = 0.058), with P-value very close to the statistical threshold. Yet, there was no correlation between FoxP3+ Tregs infiltration and disease-free survival (HR = 0.83, 95% CI = 0.63-1.09, P = 0.182). Moreover, FoxP3+ Tregs infiltration was significantly correlated with pT stage (OR = 0.50, 95% CI = 0.39-0.65, P < 0.001), tumor grade (OR = 0.77, 95% CI = 0.61-0.98, P = 0.032), lymphatic invasion (OR = 0.25, 95% CI = 0.07-0.89, P = 0.033) and vascular invasion (OR = 0.67, 95% CI = 0.52-0.86, P = 0.001). Conclusion: The present meta-analysis suggests that high FoxP3+ Tregs infiltration is inclined to indicate favorable prognosis and is associated with the pathogenesis of CRC. Immunotherapy targeting Tregs in patients with CRC should be further investigated.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zheng Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - June Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxia Yu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Cohen R, Svrcek M, Duval A, Parc Y, Österlund PP, André T. Immune checkpoint inhibitors for patients with colorectal cancer: mismatch repair deficiency and perspectives. COLORECTAL CANCER 2017. [DOI: 10.2217/crc-2017-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Harnessing the immune system to fight tumor cells is becoming a promising and innovative therapeutic strategy for a large spectrum of malignancies. The evaluation of immunotherapy in the context of colorectal cancers (CRCs) has brought to light mismatch repair deficiency as a major predictive biomarker for the efficacy of immune checkpoint blockade. In this review, we summarize the promising results of immune checkpoint inhibitors for patients with metastatic CRCs harboring mismatch repair deficiency, with special emphasis on further clinical development. Given the biological determinants of sensitivity to immune checkpoint blockade, we will also elucidate points that could unlock the potential of immunotherapy for patients with mismatch repair-proficient CRC.
Collapse
Affiliation(s)
- Romain Cohen
- Department of Medical Oncology, Hôpital Saint-Antoine, APHP, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
- INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
- Sorbonne Universités, UPMC Univ., Paris 06, France
| | - Magali Svrcek
- INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
- Sorbonne Universités, UPMC Univ., Paris 06, France
- Department of Pathology, Hôpital Saint-Antoine, APHP, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Alex Duval
- INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Yann Parc
- INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
- Sorbonne Universités, UPMC Univ., Paris 06, France
- Department of Digestive Surgery, Hôpital Saint-Antoine, APHP, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Pia P Österlund
- Department of Oncology, Tampere University Hospital, Teiskontie 35, 33520 Tampere, Finland
| | - Thierry André
- Department of Medical Oncology, Hôpital Saint-Antoine, APHP, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
- INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
- Sorbonne Universités, UPMC Univ., Paris 06, France
| |
Collapse
|
13
|
Goodwin TJ, Shen L, Hu M, Li J, Feng R, Dorosheva O, Liu R, Huang L. Liver specific gene immunotherapies resolve immune suppressive ectopic lymphoid structures of liver metastases and prolong survival. Biomaterials 2017; 141:260-271. [PMID: 28700955 DOI: 10.1016/j.biomaterials.2017.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
Abstract
The ability to generate potent immunotherapies locally and transiently for the treatment of cancers is a promising strategy to improve efficacy and decrease off-target toxicities. Here, we explored an alternative approach for the delivery of immunotherapeutic agents, in which we deliver the pDNA of an engineered PD-L1 trap and/or CXCL12 trap to the nucleus of liver hepatocytes via a lipid calcium phosphate nanoparticle. This strategy greatly increased the concentrations of immunotherapeutic agents in the local tissue, allowing the therapy to inhibit the accumulation of immune suppressive cells and liver metastasis. Furthermore, we find that the lipid calcium phosphate nanoparticles containing the pCXCL12 trap resolved the formation of immune suppressive ectopic lymphoid structures, while the pPD-L1 trap promoted T-cell survival and migration into the liver following vaccination against tumor antigens (>180% increase in survival). This approach showed superior efficacy in the treatment of the liver metastasis compared to free protein immunotherapies. This strategy should be considered as an approach to support liver metastasis therapies as well as for future research interested in manipulating the chemokine/cytokine immune factors within the liver. SIGNIFICANCE Our approach results in transient liver specific expression of gene immunotherapies with improved efficacy and reduced off-target toxicities over traditional systemically administered immunotherapies. This approach would allow clinicians to manipulate the liver and immune microenvironment to resist cancer invasion, improve organ health, and prolong patient survival.
Collapse
Affiliation(s)
- Tyler J Goodwin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard Feng
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleksandra Dorosheva
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Goodwin TJ, Huang L. Investigation of phosphorylated adjuvants co-encapsulated with a model cancer peptide antigen for the treatment of colorectal cancer and liver metastasis. Vaccine 2017; 35:2550-2557. [PMID: 28385609 DOI: 10.1016/j.vaccine.2017.03.067] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
The lipid calcium phosphate nanoparticle is a versatile platform capable of encapsulating a wide range of phosphorylated molecules from single nucleotides to pDNA. The use of this platform has shown great success as an immunotherapeutic vaccine carrier, capable of delivering co-encapsulated phosphorylated adjuvants and peptides. Three potent vaccine formulations were investigated for anti-cancer efficacy. The phosphorylated adjuvants, CpG, 2'3'cGAMP, and 5'pppdsRNA were co-encapsulated with a model phosphorylated tumor specific peptide antigen (p-AH1-A5). The anti-cancer efficacy of these adjuvants was assessed using an orthotopic colorectal liver metastasis model based on highly aggressive and metastatic CT-26 FL3 cells implanted into the cecum wall. The results clearly indicate that the RIG-1 ligand, 5'pppdsRNA, co-encapsulated with the p-AH1-A5 peptide antigen greatly reduced the growth rate of the primary colon cancer as well as arrested the establishment of liver metastasis in comparison to the other adjuvant formulations and unvaccinated controls. Further evaluation of the immune cell populations within the primary tumor confirms the ability of the 5'pppdsRNA adjuvant to boost the adaptive CD8+ T-cell population, while not inciting increased populations of immune suppressive cell types such as T-regulatory cells or myeloid derived suppressor cells. Furthermore, to our knowledge this is the first study to investigate the anti-cancer efficacy of a specific RIG-1 receptor ligand, 5'pppdsRNA, alongside more established TLR 9 (CpG) and STING (2'3'cGAMP) adjuvants in a cancer vaccine. The 5'pppdsRNA vaccine formulation can be a potent immunotherapy, especially when combined with agents that remodel the immune suppressive microenvironment of the tumor.
Collapse
Affiliation(s)
- Tyler J Goodwin
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Sonia Mannan
- Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|