1
|
Janes ME, Gottlieb AP, Park KS, Zhao Z, Mitragotri S. Cancer vaccines in the clinic. Bioeng Transl Med 2024; 9:e10588. [PMID: 38193112 PMCID: PMC10771564 DOI: 10.1002/btm2.10588] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 01/10/2024] Open
Abstract
Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.
Collapse
Affiliation(s)
- Morgan E. Janes
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Alexander P. Gottlieb
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
- University of Illinois Cancer CenterChicagoIllinoisUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
2
|
Najafi S, Mortezaee K. Advances in dendritic cell vaccination therapy of cancer. Biomed Pharmacother 2023; 164:114954. [PMID: 37257227 DOI: 10.1016/j.biopha.2023.114954] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023] Open
Abstract
Traditionally, vaccines have helped eradication of several infectious diseases and also saved millions of lives in the human history. Those prophylactic vaccines have acted through inducing immune responses against a live attenuated, killed organism or antigenic subunits to protect the recipient against a real infection caused by the pathogenic microorganism. Nevertheless, development of anticancer vaccines as valuable targets in human health has faced challenges and requires further optimizations. Dendritic cells (DCs) are the most potent antigen presenting cells (APCs) that play essential roles in tumor immunotherapies through induction of CD8+ T cell immunity. Accordingly, various strategies have been tested to employ DCs as therapeutic vaccines for exploiting their activity against tumor cells. Application of whole tumor cells or purified/recombinant antigen peptides are the most common approaches for pulsing DCs, which then are injected back into the patients. Although some hopeful results are reported for a number of DC vaccines tested in animal and clinical trials of cancer patients, such approaches are still inefficient and require optimization. Failure of DC vaccination is postulated due to immunosuppressive tumor microenvironment (TME), overexpression of checkpoint proteins, suboptimal avidity of tumor-associated antigen (TAA)-specific T lymphocytes, and lack of appropriate adjuvants. In this review, we have an overview of the current experiments and trials evaluated the anticancer efficacy of DC vaccination as well as focusing on strategies to improve their potential including combination therapy with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
3
|
Hashemi Goradel N, Nemati M, Bakhshandeh A, Arashkia A, Negahdari B. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen. Int Immunopharmacol 2023; 117:109887. [PMID: 36841155 DOI: 10.1016/j.intimp.2023.109887] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
As an interesting cancer immunotherapy approach, cancer vaccines have been developed to deliver tumor antigens and adjuvants to antigen-presenting cells (APCs). Although the safety and easy production shifted the vaccine designing platforms toward the subunit vaccines, their efficacy is limited due to inefficient vaccine delivery. Nanotechnology-based vaccines, called nanovaccines, address the delivery limitations through co-delivery of antigens and adjuvants into lymphoid organs and APCs and their intracellular release, leading to cross-presentation of antigens and induction of potent anti-tumor immune responses. Although the nanovaccines, either as encapsulating agents or biomimetic nanoparticles, exert the desired anti-tumor activities, there is evidence that the mixing formulation to form nanocomplexes between antigens and adjuvants based on the electrostatic interactions provokes high levels of immune responses owing to Ags' availability and faster release. Here, we summarized the various platforms for developing cancer vaccines and the advantages of using delivery systems. The cancer nanovaccines, including nanoparticle-based and biomimetic-based nanovaccines, are discussed in detail. Finally, we focused on the nanocomplexes formation between antigens and adjuvants as promising cancer nanovaccine platforms.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Bakhshandeh
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Schineis P, Kotkowska ZK, Vogel-Kindgen S, Friess MC, Theisen M, Schwyter D, Hausammann L, Subedi S, Varypataki EM, Waeckerle-Men Y, Kolm I, Kündig TM, Høgset A, Gander B, Halin C, Johansen P. Photochemical internalization (PCI)-mediated activation of CD8 T cells involves antigen uptake and CCR7-mediated transport by migratory dendritic cells to draining lymph nodes. J Control Release 2021; 332:96-108. [PMID: 33609623 DOI: 10.1016/j.jconrel.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Antigen cross-presentation to cytotoxic CD8+ T cells is crucial for the induction of anti-tumor and anti-viral immune responses. Recently, co-encapsulation of photosensitizers and antigens into microspheres and subsequent photochemical internalization (PCI) of antigens in antigen presenting cells has emerged as a promising new strategy for inducing antigen-specific CD8+ T cell responses in vitro and in vivo. However, the exact cellular mechanisms have hardly been investigated in vivo, i.e., which cell types take up antigen-loaded microspheres at the site of injection, or in which secondary lymphoid organ does T cell priming occur? We used spray-dried poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with ovalbumin and the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) to investigate these processes in vivo. Intravital microscopy and flow cytometric analysis of the murine ear skin revealed that dendritic cells (DCs) take up PLGA microspheres in peripheral tissues. Illumination then caused photoactivation of TPCS2a and induced local tissue inflammation that enhanced CCR7-dependent migration of microsphere-containing DCs to tissue-draining lymph nodes (LNs), i.e., the site of CD8+ T cell priming. The results contribute to a better understanding of the functional mechanism of PCI-mediated vaccination and highlight the importance of an active transport of vaccine microspheres by antigen presenting cells to draining LNs.
Collapse
Affiliation(s)
- Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Zuzanna K Kotkowska
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland; Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Mona C Friess
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Martine Theisen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - David Schwyter
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Lucy Hausammann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Saurav Subedi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Eleni M Varypataki
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Ying Waeckerle-Men
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Anders Høgset
- PCI Biotech AS, Ullernchauséen 64, 0379 Oslo, Norway
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.
| |
Collapse
|
5
|
Abstract
Cancer is a major burden on the healthcare system, and new therapies are needed. Recently, the development of immunotherapies, which aim to boost or use the immune system, or its constituents, as a tool to fight malignant cells, has provided a major new tool in the arsenal of clinicians and has revolutionized the treatment of many cancers.Cellular immunotherapies are based on the administration of living cells to patients and have developed hugely, especially since 2010 when Sipuleucel-T (Provenge), a DC vaccine, was the first cellular immunotherapy to be approved by the FDA. The ensuing years have seen two further cellular immunotherapies gain FDA approval: tisagenlecleucel (Kymriah) and axicabtagene ciloleucel (Yescarta).This review will give an overview of the principles of immunotherapies before focusing on the major forms of cellular immunotherapies individually, T cell-based, natural killer (NK) cell-based and dendritic cell (DC)-based, as well as detailing some of the clinical trials relevant to each therapy.
Collapse
Affiliation(s)
- Conall Hayes
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Dickman LR, Kuang Y. Analysis of tumor-immune dynamics in a delayed dendritic cell therapy model. CHAOS (WOODBURY, N.Y.) 2020; 30:113108. [PMID: 33261329 DOI: 10.1063/5.0006567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
We formulate a tumor-immune interaction model with a constant delay to capture the behavior following application of a dendritic cell therapy. The model is validated using experimental data from melanoma-induced mice. Through theoretical and numerical analyses, the model is shown to produce rich dynamics, such as a Hopf bifurcation and bistability. We provide thresholds for tumor existence and, in a special case, tumor elimination. Our work indicates a sensitivity in model outcomes to the immune response time. We provide a stability analysis for the high tumor equilibrium. For small delays in response, the tumor and immune system coexist at a low level. Large delays give rise to fatally high tumor levels. Our computational and theoretical work reveals that there exists an intermediate region of delay that generates complex oscillatory, even chaotic, behavior. The model then reflects uncertainty in treatment outcomes for varying initial tumor burdens, as well as tumor dormancy followed by uncontrolled growth to a lethal size, a phenomenon seen in vivo. Theoretical and computational analyses suggest efficacious treatments to use in conjunction with the dendritic cell vaccine. Additional analysis of a highly aggressive tumor additionally confirms the importance of representation with a time delay, as periodic solutions are strictly able to be generated when a delay is present.
Collapse
Affiliation(s)
- Lauren R Dickman
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287-1804, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287-1804, USA
| |
Collapse
|
7
|
Wei BM, Hanlon D, Khalil D, Han P, Tatsuno K, Sobolev O, Edelson RL. Extracorporeal Photochemotherapy: Mechanistic Insights Driving Recent Advances and Future Directions. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:145-159. [PMID: 32226344 PMCID: PMC7087063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, necessary for the initiation and maintenance of antigen-specific immunity and tolerance. Decades of research have been driven by hopes to harness the immunological capabilities of DCs and achieve physiological partnership with the immune system for therapeutic ends. Potential applications for DC-based immunotherapy include treatments for cancer, autoimmune disorders, and infectious diseases. However, DCs have poor availability in peripheral and lymphoid tissues and have poor survivability in culture, leading to the development of multiple strategies to generate and manipulate large numbers of DCs ex vivo. Among these is Extracorporeal Photopheresis (ECP), a widely used cancer immunotherapy. Recent advancements have uncovered that stimulation of monocyte-to-DC maturation via physiologic inflammatory signaling lies at the mechanistic core of ECP. Here, we describe the landscape of DC-based immunotherapy, the historical context of ECP, the current mechanistic understanding of ex vivo monocyte-to-DC maturation in ECP, and the implications of this understanding on making scientifically driven improvements to modern ECP protocols and devices.
Collapse
Affiliation(s)
- Brian M. Wei
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Douglas Hanlon
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - David Khalil
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT
| | - Kazuki Tatsuno
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Olga Sobolev
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Richard L. Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Richard L. Edelson, MD, PO Box 208059, 333 Cedar St., New Haven, CT, 06520-8059; Tel: 203-785-4092, Fax: 203-737-5318,
| |
Collapse
|
8
|
Sharan B, Chiliveru S, Bagga J, Kohli S, Bharadwaj A, Vaid AK, Kumar C. Substantial tumor regression in prostate cancer patient with extensive skeletal metastases upon Immunotherapy (APCEDEN): A case report. Medicine (Baltimore) 2020; 99:e18889. [PMID: 32080073 PMCID: PMC7034657 DOI: 10.1097/md.0000000000018889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Prostate cancer along with colorectal and lung cancers accounts for 42% of cancer cases in men globally. It is the first cancer indication for which the use of active immunotherapy, Sipuleucel-T (Provenge) was granted by the FDA in 2010. This study presents a case of prostate carcinoma and the tumour remission observed after administration of a personalised Dendritic cell vaccine (APCEDEN). PATIENT CONCERNS A 58 years old Caucasian male diagnosed with prostate carcinoma with GLEASON score 8. The patient had previously been diagnosed with Renal Cell Carcinoma (RCC) in 1996 and had undergone nephrectomy of the right kidney. PET CT scan revealed multiple intensely PSMA avid lesions noted in both lobes of the prostate gland with SUVmax -28.3 and the prostate gland measuring 3.2 × 3.2 cm displaying maximum dimensions. DIAGNOSIS FNAC followed by PETCT confirmed CA Prostate and further supported by increased serum PSA level. INTERVENTIONS The patient underwent personalised Dendritic Cell Immunotherapy APCEDEN regimen of six doses biweekly, in a time frame of 3 months were given both via intravenous and intradermal route. Six months post completion of APCEDEN, the patient was administered 6 booster shots for 6 months. OUTCOMES Progressive remission of carcinoma was observed along with reduction in PSA and Testosterone levels. PET CT showed decline in PSMA avidity by 50% with SUVmax -14.0 and normal size and shape of prostate gland. LESSONS Prostate carcinoma is the second most common cancer in men with majority of them exhibiting locally advanced disease. Apparently 20% to 30% of them are categorized as relapsed cases after various therapeutic interventions. Modulating immune system is an emerging therapy termed as Immunotherapy and potentiates the killing cancer cells via immune activation. Interestingly, prostate cancer is slow growing and it provides the scope and time to mount an anti-tumor response which makes it an attractive target for immunotherapy. This case study demonstrates the efficacy of APCEDEN Immunotherapy regimen resulting in a significant disease remission benefiting the patient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ashok K. Vaid
- Department of Medical Oncology and Hematology, Medanta - The Medicity, Gurgaon, Haryana, India
| | | |
Collapse
|
9
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
10
|
Kumar C, Bagga J, Chiliveru S, Kohli S, Bharadwaj A, Jain M, Inamdar S, Sharan B. Substantial remission of prostate adenocarcinoma with dendritic cell therapy APCEDEN ® in combination with chemotherapy. Future Sci OA 2019; 5:FSO435. [PMID: 31827897 PMCID: PMC6900976 DOI: 10.2144/fsoa-2019-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Of the most prevalent solid tumors with advanced disease, prostate and ovarian cancer and non-small cell lung carcinoma have the fewest therapeutic options. Herein, we report the case of a 63-year-old male with metastatic prostate adenocarcinoma showing substantial remission post-administration of personalized dendritic cell-based vaccine APCEDEN® in combination with chemotherapeutic drug Mitoxantrone. Therapeutic response displayed an interesting clinical correlation validated by PET scan images showing decreased fluorodeoxyglucose (FDG) avidity in the prostate gland, reduced skeletal metastases further established by the drop in serum Prostate Specific Antigen (PSA) levels and expression of immune assessment markers (IFN-γ, Tregs, neutrophil lymphocyte ratio and platelet lymphocyte ratio). This case demonstrates the potential efficacy of dendritic cell immunotherapy, showing a potent antitumor activity by enhancing the host immune responses, and improving quality of life. Prostate adenocarcinoma is the most common cancer and second leading cause of cancer-related death in men. Advanced cancers have very few therapeutic options. Understanding of the immune system has led to the development of novel personalized vaccines as an emerging and efficient treatment modality for cancer. This case study describes the substantial remission of advanced prostate cancer after receiving the personalized dendritic cell therapy APCEDEN in combination with the chemotherapy drug mitoxantrone, even after the patient’s previous failed treatment history of standard hormonal, chemo- and radiotherapy regimens. This case stands as an interesting example of combination therapy for cancer benefiting the patient.
Collapse
Affiliation(s)
| | | | | | | | | | - Minish Jain
- Medical Oncology, Ruby Hall Clinic, Pune, India
| | | | | |
Collapse
|
11
|
Markov O, Oshchepkova A, Mironova N. Immunotherapy Based on Dendritic Cell-Targeted/-Derived Extracellular Vesicles-A Novel Strategy for Enhancement of the Anti-tumor Immune Response. Front Pharmacol 2019; 10:1152. [PMID: 31680949 PMCID: PMC6798004 DOI: 10.3389/fphar.2019.01152] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-based anti-tumor vaccines have great potential for the treatment of cancer. To date, a large number of clinical trials involving DC-based vaccines have been conducted with a view to treating tumors of different histological origins. However, DC-based vaccines had several drawbacks, including problems with targeted delivery of tumor antigens to DCs and prolong storage of cellular vaccines. Therefore, the development of other immunotherapeutic approaches capable of enhancing the immunogenicity of existing DC-based vaccines or directly triggering anti-tumor immune responses is of great interest. Extracellular vesicles (EVs) are released by almost all types of eukaryotic cells for paracrine signaling. EVs can interact with target cells and change their functional activity by delivering different signaling molecules including mRNA, non-coding RNA, proteins, and lipids. EVs have potential benefits as natural vectors for the delivery of RNA and other therapeutic molecules targeted to DCs, T-lymphocytes, and tumor cells; therefore, EVs are a promising entity for the development of novel cell-free anti-tumor vaccines that may be a favourable alternative to DC-based vaccines. In the present review, we discuss the anti-tumor potential of EVs derived from DCs, tumors, and other cells. Methods of EV isolation are systematized, and key molecules carried by EVs that are necessary for the activation of a DC-mediated anti-tumor immune response are analyzed with a focus on the RNA component of EVs. Characteristics of anti-tumor immune responses induced by EVs in vitro and in vivo are reviewed. Finally, perspectives and challenges with the use of EVs for the development of anti-tumor cell-free vaccines are considered.
Collapse
Affiliation(s)
- Oleg Markov
- Laboratory of Nucleic Acids Biochemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | | | | |
Collapse
|
12
|
Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Front Immunol 2019; 10:766. [PMID: 31031762 PMCID: PMC6470191 DOI: 10.3389/fimmu.2019.00766] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate and adaptive immune system, and have critical roles in the induction of antitumor immunity. However, despite proven immunogenicity and favorable safety profiles, DC-based immunotherapies have not succeeded at inducing significant objective clinical responses. Emerging data suggest that the combination of DC-based vaccination with other cancer therapies may fully unleash the potential of DC-based cancer vaccines and improve patient survival. In this review, we discuss the recent efforts to develop innovative personalized DC-based vaccines and their use in combined therapies, with a particular focus on ovarian cancer and the promising results of mutanome-based personalized immunotherapies.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Klara Balint
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Boudousquie
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Philippe O Gannon
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Regenerative Medicine: Injectable Cell-Based Therapeutics and Approved Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:75-95. [DOI: 10.1007/5584_2019_412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|