1
|
Maintz L, Welchowski T, Herrmann N, Brauer J, Traidl-Hoffmann C, Havenith R, Müller S, Rhyner C, Dreher A, Schmid M, Bieber T. IL-13, periostin and dipeptidyl-peptidase-4 reveal endotype-phenotype associations in atopic dermatitis. Allergy 2023; 78:1554-1569. [PMID: 36647778 DOI: 10.1111/all.15647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The heterogeneous (endo)phenotypes of atopic dermatitis (AD) require precision medicine. Currently, systemic therapy is recommended to patients with an Eczema Area and Severity Index (EASI)≥16. Previous studies have demonstrated an improved treatment response to the anti-interleukin (IL)-13 antibody tralokinumab in AD subgroups with elevated levels of the IL-13-related biomarkers dipeptidyl-peptidase (DPP)-4 and periostin. METHODS Herein, 373 AD patients aged≥12 years were stratified by IL-13high , periostinhigh and DPP-4high endotypes using cross-sectional data from the ProRaD cohort Bonn. "High" was defined as >80th quantile of 47 non-atopic controls. We analyzed endotype-phenotype associations using machine-learning gradient boosting compared to logistic regression. RESULTS AD severity and eosinophils correlated with IL-13 and periostin levels. Correlations of IL-13 with EASI were stronger in patients with increased (rs=0.482) than with normal (rs=0.342) periostin levels. We identified eosinophilia>6% and an EASI range of 5.5-17 dependent on the biomarker combination to be associated with increasing probabilities of biomarkerhigh endotypes. Also patients with mild-to-low-moderate severity (EASI<16) featured increased biomarkers (IL-13high : 41%, periostinhigh : 48.4%, DPP-4high : 22.3%). Herthoge sign (adjusted Odds Ratio (aOR)=1.89, 95% Confidence Interval (CI) [1.14-3.14]) and maternal allergic rhinitis (aOR=2.79-4.47) increased the probability of an IL-13high -endotype, "dirty neck" (aOR=2.83 [1.32-6.07]), orbital darkening (aOR=2.43 [1.08-5.50]), keratosis pilaris (aOR=2.21 [1.1-4.42]) and perleche (aOR=3.44 [1.72-6.86]) of a DPP-4high -endotype. CONCLUSIONS A substantial proportion of patients with EASI<16 featured high biomarker levels suggesting systemic impact of skin inflammation already below the current cut-off for systemic therapy. Our findings facilitate the identification of patients with distinct endotypes potentially linked to response to IL-13-targeted therapy.
Collapse
Affiliation(s)
- Laura Maintz
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Thomas Welchowski
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Nadine Herrmann
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Juliette Brauer
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Stenglinstraße 2, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Augsburg, Germany
| | - Regina Havenith
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Svenja Müller
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Claudio Rhyner
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Davos Biosciences, Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Anita Dreher
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Davos Biosciences, Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| | - Matthias Schmid
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
- Christine Kühne Center for Allergy Research and Education Davos (CK-CARE), Herman-Burchard-Str. 1, 7265, Davos, Switzerland
- Davos Biosciences, Herman-Burchard-Str. 1, 7265, Davos, Switzerland
| |
Collapse
|
2
|
Kardas G, Panek M, Kuna P, Damiański P, Kupczyk M. Monoclonal antibodies in the management of asthma: Dead ends, current status and future perspectives. Front Immunol 2022; 13:983852. [PMID: 36561741 PMCID: PMC9763885 DOI: 10.3389/fimmu.2022.983852] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with moderate-to-severe asthma may now be treated using a variety of monoclonal antibodies that target key inflammatory cytokines involved in disease pathogenesis. Existing clinical data on anti-IgE, anti-IL-5 and other immunological pathways indicate these therapies to offer reduced exacerbation rates, improved lung function, greater asthma control and better quality of life. However, as several patients still do not achieve satisfactory clinical response with the antibodies available, many more biologics, aiming different immunological pathways, are under evaluation. This review summarizes recent data on existing and potential monoclonal antibodies in asthma. Recent advances have resulted in the registration of a new antibody targeting TSLP (tezepelumab), with others being under development. Some of the researched monoclonal antibodies (e.g. anti-IL-13 tralokinumab and lebrikizumab or anti-IL-17A secukinumab) have shown optimistic results in preliminary research; however, these have been discontinued in asthma clinical research. In addition, as available monoclonal antibody treatments have shown little benefit among patients with T2-low asthma, research continues in this area, with several antibodies in development. This article summarizes the available pre-clinical and clinical data on new and emerging drugs for treating severe asthma, discusses discontinued treatments and outlines future directions in this area.
Collapse
|
3
|
Massey O, Suphioglu C. Recent Advances in the Inhibition of the IL-4 Cytokine Pathway for the Treatment of Allergen-Induced Asthma. Int J Mol Sci 2021; 22:ijms222413655. [PMID: 34948449 PMCID: PMC8706302 DOI: 10.3390/ijms222413655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
The IL-4 and IL-13 cytokine pathways play integral roles in stimulating IgE inflammation, with the IL-4 cytokine being a major cytokine in the etiology of thunderstorm asthma, atopic dermatitis, and allergic rhinitis. The increasing prevalence of thunderstorm asthma in the younger population and the lessening efficacy of corticosteroids and other anti-inflammatories has created a need for more effective pharmaceuticals. This review summarizes the IL-4 and IL-13 pathways while highlighting and discussing the current pathway inhibitors aimed at treating thunderstorm asthma and atopic dermatitis, as well as the potential efficacy of peptide therapeutics in this field.
Collapse
Affiliation(s)
- Oliver Massey
- NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory, School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia;
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
4
|
Fieldes M, Bourguignon C, Assou S, Nasri A, Fort A, Vachier I, De Vos J, Ahmed E, Bourdin A. Targeted therapy in eosinophilic chronic obstructive pulmonary disease. ERJ Open Res 2021; 7:00437-2020. [PMID: 33855061 PMCID: PMC8039900 DOI: 10.1183/23120541.00437-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and preventable airway disease causing significant worldwide mortality and morbidity. Lifetime exposure to tobacco smoking and environmental particles are the two major risk factors. Over recent decades, COPD has become a growing public health problem with an increase in incidence. COPD is defined by airflow limitation due to airway inflammation and small airway remodelling coupled to parenchymal lung destruction. Most patients exhibit neutrophil-predominant airway inflammation combined with an increase in macrophages and CD8+ T-cells. Asthma is a heterogeneous chronic inflammatory airway disease. The most studied subtype is type 2 (T2) high eosinophilic asthma, for which there are an increasing number of biologic agents developed. However, both asthma and COPD are complex and share common pathophysiological mechanisms. They are known as overlapping syndromes as approximately 40% of patients with COPD present an eosinophilic airway inflammation. Several studies suggest a putative role of eosinophilia in lung function decline and COPD exacerbation. Recently, pharmacological agents targeting eosinophilic traits in uncontrolled eosinophilic asthma, especially monoclonal antibodies directed against interleukins (IL-5, IL-4, IL-13) or their receptors, have shown promising results. This review examines data on the rationale for such biological agents and assesses efficacy in T2-endotype COPD patients. Patients with severe COPD and eosinophilic inflammation experience uncontrolled symptoms despite optimal pharmaceutical treatment. The development of new biomarkers is needed for better phenotyping of patients to propose innovative targeted therapy.https://bit.ly/2KzWuNO
Collapse
Affiliation(s)
- Mathieu Fieldes
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | | | - Said Assou
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | - Amel Nasri
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | - Aurélie Fort
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, Montpellier, France
| | - Isabelle Vachier
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France
| | - John De Vos
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France.,Dept of Cell and Tissue Engineering, Montpellier University Hospital, Montpellier, France
| | - Engi Ahmed
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France
| | - Arnaud Bourdin
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, Montpellier, France
| |
Collapse
|
5
|
Pharmacokinetic-Pharmacodynamic Modelling of Systemic IL13 Blockade by Monoclonal Antibody Therapy: A Free Assay Disguised as Total. Pharmaceutics 2021; 13:pharmaceutics13040519. [PMID: 33918602 PMCID: PMC8069034 DOI: 10.3390/pharmaceutics13040519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/17/2023] Open
Abstract
A sequential pharmacokinetic (PK) and pharmacodynamic (PD) model was built with Nonlinear Mixed Effects Modelling based on data from a first-in-human trial of a novel biologic, MEDI7836. MEDI7836 is a human immunoglobulin G1 lambda (IgG1λ-YTE) monoclonal antibody, with an Fc modification to reduce metabolic clearance. MEDI7836 specifically binds to, and functionally neutralizes interleukin-13. Thirty-two healthy male adults were enrolled into a dose-escalation clinical trial. Four active doses were tested (30, 105, 300, and 600 mg) with 6 volunteers enrolled per cohort. Eight volunteers received placebo as control. Following single subcutaneous administration (SC), individual time courses of serum MEDI7836 concentrations, and the resulting serum IL13 modulation in vivo, were quantified. A binding pharmacokinetic-pharmacodynamic (PK-PD) indirect response model was built to characterize the exposure-driven modulation of the target over time by MEDI7836. While the validated bioanalytical assay specification quantified the level of free target (i.e., a free IL13 assay), emerging clinical data suggested dose-dependent increase in systemic IL13 concentration over time, indicative of a total IL13 assay. The target time course was modelled as a linear combination of free target and a percentage of the drug-target complex to fit the clinical data. This novel PK-PD modelling approach integrates independent knowledge about the assay characteristics to successfully elucidate apparently complex observations.
Collapse
|
6
|
Napolitano M, Ruggiero A, Fontanella G, Fabbrocini G, Patruno C. New emergent therapies for atopic dermatitis: A review of safety profile with respect to female fertility, pregnancy, and breastfeeding. Dermatol Ther 2020; 34:e14475. [PMID: 33128337 DOI: 10.1111/dth.14475] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/31/2022]
Abstract
Atopic dermatitis (AD) is a chronic relapsing inflammatory skin disease. Systemic treatment is usually mandatory in moderate-to-severe AD of the adult; these patients need to be informed about safe and effective management of AD also regarding the reproduction. Treating a pregnant woman with AD with systemic drugs may affect the unborn child. While effects of traditional systemic treatments for AD on female fertility, pregnancy, and breastfeeding are largely known, data about new emergent therapies for AD are still poor. Treating pregnant or lactating women with AD can be a challenge since no large clinical studies on its possible effects and side-effects on conception, pregnancy, the unborn child and lactation are currently available for new AD treatments.
Collapse
Affiliation(s)
- Maddalena Napolitano
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Angelo Ruggiero
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | - Giuseppina Fontanella
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Italy
| | - Cataldo Patruno
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
7
|
Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma. Drug Saf 2020; 42:769-784. [PMID: 30649752 PMCID: PMC6520328 DOI: 10.1007/s40264-018-00788-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%. External evaluation for anaphylaxis by Sampson criteria found no tralokinumab-related severe hypersensitivity or anaphylaxis reactions. Conclusion Preclinical assessments suggested a low likelihood of immunogenicity for tralokinumab. In STRATOS 1 and 2, ADA incidence was low, no differences were found between tralokinumab-treated and placebo groups in reporting of hypersensitivity reactions, and there were no Sampson criteria-evaluated anaphylaxis events with tralokinumab treatment. Together, the results suggest that tralokinumab treatment would not increase the risk for severe hypersensitivity or anaphylactic reactions. Electronic supplementary material The online version of this article (10.1007/s40264-018-00788-w) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Gregg M. Immunotherapy Foreword 2018. Immunotherapy 2019; 10:1339-1341. [PMID: 30474483 DOI: 10.2217/imt-2018-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To all of our readers, the Future Medicine editorial office would like to thank you for your continued readership over 2018 and I hope you have a fantastic Christmas and New Year. I would also like to thank our esteemed editorial board, peer reviewers and contributing authors for their continued support. We very much look forward to working with you all in 2019 and seeing the journal continue to progress. In this foreword, we will present some highlights from the last 12 months in addition to looking forward to the year ahead.
Collapse
Affiliation(s)
- Mike Gregg
- Future Science Group, Unitec House, 2 Albert Place, London N31QB, UK
| |
Collapse
|
9
|
Interleukin-4/interleukin-13 versus interleukin-5: a comparison of molecular targets in biologic therapy for the treatment of severe asthma. Curr Opin Allergy Clin Immunol 2019; 19:30-37. [PMID: 30407206 DOI: 10.1097/aci.0000000000000490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Asthma is a chronic, inflammatory disorder of the airways caused by a complex interplay of various biologic mechanisms. Several monoclonal antibody therapies targeting interleukin (IL)-4/IL-13 and IL-5 cytokine pathways have been developed for the treatment of severe eosinophilic asthma. As individuals can display biomarkers and clinical features characteristic of several asthma phenotypes, selection of anoptimal biologic can be difficult. RECENT FINDINGS Dupilumab, a monoclonal antibody that binds to the α subunit of the IL-4 receptor (IL-4Rα) and has been approved for the treatment of adults with severe atopic dermatitis, has been shown in recent phase 3 trials to also have significant clinical benefits in the asthmatic population irrespective of baseline eosinophil counts. SUMMARY As monoclonal antibodies targeting either IL-4 or IL-13 cytokines individually have failed to demonstrate significant clinical benefits, biologics that target cytokine receptors may be more efficacious compared to those that target cytokines. Furthermore, inhibition of the IL-4/IL-13 signaling cascades may disrupt a broader Th2 inflammatory response compared to a more selective impairment of eosinophil proliferation and activity via blockage of the IL-5 pathway. Future research with independently funded, head-to-head trials of approved biologics is needed to elucidate a favorable therapeutic option.
Collapse
|
10
|
Gottlow M, Svensson DJ, Lipkovich I, Huhn M, Bowen K, Wessman P, Colice G. Application of structured statistical analyses to identify a biomarker predictive of enhanced tralokinumab efficacy in phase III clinical trials for severe, uncontrolled asthma. BMC Pulm Med 2019; 19:129. [PMID: 31315668 PMCID: PMC6637533 DOI: 10.1186/s12890-019-0889-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Tralokinumab is an anti–interleukin (IL)-13 monoclonal antibody investigated for the treatment of severe, uncontrolled asthma in two Phase III clinical trials, STRATOS 1 and 2. The STRATOS 1 biomarker analysis plan was developed to identify biomarker(s) indicative of IL-13 activation likely to predict tralokinumab efficacy and define a population in which there was an enhanced treatment effect; this defined population was then tested in STRATOS 2. Methods The biomarkers considered were blood eosinophil counts, fractional exhaled nitric oxide (FeNO), serum dipeptidyl peptidase-4, serum periostin and total serum immunoglobulin E. Tralokinumab efficacy was measured as the reduction in annualised asthma exacerbation rate (AAER) compared with placebo (primary endpoint measure of STRATOS 1 and 2). The biomarker analysis plan included negative binomial and generalised additive models, and the Subgroup Identification based on Differential Effect Search (SIDES) algorithm, supported by robustness and sensitivity checks. Effects on the key secondary endpoints of STRATOS 1 and 2, which included changes from baseline in standard measures of asthma outcomes, were also investigated. Prior to the STRATOS 1 read-out, numerous simulations of the methodology were performed with hypothetical data. Results FeNO and periostin were identified as the only biomarkers potentially predictive of treatment effect, with cut-offs chosen by the SIDES algorithm of > 32.3 ppb and > 27.4 ng/ml, respectively. The FeNO > 32.3 ppb subgroup was associated with greater AAER reductions and improvements in key secondary endpoints compared with the periostin > 27.4 ng/ml subgroup. Upon further evaluation of AAER reductions at different FeNO cut-offs, ≥37 ppb was chosen as the best cut-off for predicting tralokinumab efficacy. Discussion A rigorous statistical approach incorporating multiple methods was used to investigate the predictive properties of five potential biomarkers and to identify a participant subgroup that demonstrated an enhanced tralokinumab treatment effect. Using STRATOS 1 data, our analyses identified FeNO at a cut-off of ≥37 ppb as the best assessed biomarker for predicting enhanced treatment effect to be tested in STRATOS 2. Our findings were inconclusive, which reflects the complexity of subgroup identification in the severe asthma population. Trial registration STRATOS 1 and 2 are registered on ClinicalTrials.gov (NCT02161757 registered on June 12, 2014, and NCT02194699 registered on July 18, 2014). Electronic supplementary material The online version of this article (10.1186/s12890-019-0889-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattis Gottlow
- Biometrics and Information Sciences, AstraZeneca, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - David J Svensson
- Biometrics and Information Sciences, AstraZeneca, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Ilya Lipkovich
- IQVIA, 4820 Emperor Blvd, Durham, NC, 27703, USA.,Present Address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, 46285, USA
| | - Monika Huhn
- Biometrics and Information Sciences, AstraZeneca, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Karin Bowen
- Biometrics and Information Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Peter Wessman
- Biometrics and Information Sciences, AstraZeneca, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Gene Colice
- Global Medicines Development, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Sung-Ryeol Kim
- Division of Allergy and Immunology, Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hyun Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Yoo SM, Chung SH. Targets of monoclonal antibodies for immunological diseases. Arch Pharm Res 2018; 42:293-304. [PMID: 30426387 DOI: 10.1007/s12272-018-1087-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/31/2018] [Indexed: 01/28/2023]
Abstract
Immunological disorders such as allergy, autoimmune diseases, auto-inflammatory syndromes and immunological deficiency syndromes are difficult to treat with chemical drugs. Recently, many monoclonal antibodies targeting various molecules including interleukin, tumor necrosis factor-α, cluster of differentiation, integrins, complement C5 and B lymphocyte stimulator are clinically available and give a hope to patients suffering from these intractable diseases. Here, we selected twenty-seven monoclonal antibodies approved by US FDA since 1997 and they are classified according to their target molecules. Although these biomedicines possessed some restrictions such as high cost and susceptible to infectious disease, these drawbacks can be overcome through cost-cutting innovations including biosimilars and careful monitoring. New targets are emerging rapidly and more effective biomedicines with acceptable side effects are in the pipeline for next decade.
Collapse
Affiliation(s)
- Seon Min Yoo
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Sung Hyun Chung
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Renert-Yuval Y, Guttman-Yassky E. Monoclonal antibodies for the treatment of atopic dermatitis. Curr Opin Allergy Clin Immunol 2018; 18:356-364. [DOI: 10.1097/aci.0000000000000455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Panettieri RA, Sjöbring U, Péterffy A, Wessman P, Bowen K, Piper E, Colice G, Brightling CE. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. THE LANCET RESPIRATORY MEDICINE 2018; 6:511-525. [PMID: 29792288 DOI: 10.1016/s2213-2600(18)30184-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tralokinumab is an anti-interleukin-13 human monoclonal antibody developed for the treatment of severe, uncontrolled asthma. These clinical trials aimed to assess the efficacy and safety of tralokinumab in this population. METHODS STRATOS 1 and STRATOS 2 were randomised, double-blind, parallel-group, placebo-controlled, phase 3 clinical trials that enrolled participants aged 12-75 years with severe asthma that was inadequately controlled despite use of inhaled corticosteroids (≥500 μg per day fluticasone or equivalent) and a long-acting β2 agonist (but not oral corticosteroids). STRATOS 1 was done at 246 sites in 14 countries, and STRATOS 2 was done at 242 sites in 13 countries. In STRATOS 1, participants were randomly assigned (2:1) to receive tralokinumab 300 mg or matching placebo subcutaneously every 2 weeks or every 4 weeks for 52 weeks. In STRATOS 2, participants were randomly assigned (1:1) to receive tralokinumab 300 mg or matching placebo subcutaneously every 2 weeks for 52 weeks. STRATOS 1 attempted to identify a biomarker-positive population with enhanced tralokinumab benefit, which was then tested in STRATOS 2. The primary endpoint was the annualised asthma exacerbation rate (AAER) reduction at week 52 in the all-comers population for STRATOS 1 and in the biomarker-positive population for STRATOS 2. All efficacy analyses for both trials were done on the full analysis set by an intention-to-treat approach. The safety analysis set comprised any participant who received the investigational drug and was categorised by treatment received. These trials are registered with ClinicalTrials.gov, numbers NCT02161757 (STRATOS 1) and NCT02194699 (STRATOS 2), and with the EU Clinical Trials Register, EudraCT 2013-005614-35 (STRATOS 1) and EudraCT 2013-005615-27 (STRATOS 2). FINDINGS STRATOS 1 was done between June 13, 2014, and Feb 28, 2017. 1207 participants were randomly assigned and 1202 treated as follows: tralokinumab every 2 weeks (n=398), tralokinumab every 4 weeks (n=404), or placebo (n=400). STRATOS 2 was done between Oct 30, 2014, and Sept 21, 2017. 856 participants were randomly assigned and 849 treated as follows: tralokinumab every 2 weeks (n=427) and placebo every 2 weeks (n=422). In the STRATOS 1 all-comers population, tralokinumab every 2 weeks did not significantly reduce AAER compared with placebo (7·0% reduction [95% CI -20·8 to 28·4]; rate ratio 0·93 [95% CI 0·72 to 1·21]; p=0·59). Baseline fractional exhaled nitric oxide (FENO) 37 ppb or greater was identified as the preferred biomarker in STRATOS 1; in FENO-high participants, tralokinumab every 2 weeks (n=97) reduced AAER by 44·0% (95% CI 6·0 to 66·0; rate ratio 0·56 [95% CI 0·34 to 0·94]; p=0·028) compared with placebo (n=102). In the STRATOS 2 FENO-high population, tralokinumab every 2 weeks (n=108) did not significantly improve AAER (15·8% reduction [95% CI -33·7 to 47·0]; rate ratio 0·84 [95% CI 0·53 to 1·34]; p=0·47) compared with placebo (n=121). The safety profile was consistent with that of previous tralokinumab trials. INTERPRETATION Tralokinumab reduced AAER in participants with severe asthma with baseline FENO 37 ppb or higher in STRATOS 1, but not in STRATOS 2. These inconsistent effects on AAER do not support a key role for interleukin 13 in severe asthma exacerbations. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; University of Pennsylvania, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|