1
|
Thin KA, Cross A, Angsuwatcharakon P, Mutirangura A, Puttipanyalears C, Edwards SW. Changes in immune cell subtypes during ageing. Arch Gerontol Geriatr 2024; 122:105376. [PMID: 38412791 DOI: 10.1016/j.archger.2024.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The immune system comprises many different types of cells, each with different functions and properties during immune defence. The numbers and types of immune cells in the circulation is highly dynamic and regulated by infections, ageing and certain types of cancers. It is recognised that immune function decreases during ageing, but the biological age at which these functional changes occur is variable, and how ageing affects the different sub-types of lymphocytes, monocytes and NK cells in the circulation is not fully defined. METHODS In this study, we recruited 24 healthy volunteers over the age range of 23y to 89y and measured the numbers of different subclasses of circulating cells by immuno-phenotyping and flow cytometry. RESULTS We show increased monocyte:lymphocyte ratios in a > 50y cohort and most T cell subsets were decreased, except for CD4+ cells, which were increased in this cohort. In addition, there was NK cell expansion and increased HLA-DR+ T cells, but decreased numbers of classical monocytes and increased numbers of CD4+ monocytes in this >50y cohort. CONCLUSIONS These data indicate that healthy ageing is associated with changes in both the major cell groups but also individual subclasses of cells, and these are likely to result from continuous immune challenge and impaired development.
Collapse
Affiliation(s)
- Khin Aye Thin
- Joint PhD Program in Biomedical Sciences and Biotechnology between Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Andrew Cross
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Charoenchai Puttipanyalears
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 3BX, United Kingdom.
| |
Collapse
|
2
|
Gorgulho J, Roderburg C, Beier F, Bokemeyer C, Brümmendorf TH, Loosen SH, Luedde T. Soluble lymphocyte activation gene-3 (sLAG3) and CD4/CD8 ratio dynamics as predictive biomarkers in patients undergoing immune checkpoint blockade for solid malignancies. Br J Cancer 2024; 130:1013-1022. [PMID: 38233492 PMCID: PMC10951205 DOI: 10.1038/s41416-023-02558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND The search for biomarkers to identify suitable candidates for immune checkpoint inhibitor (ICI) therapy remains ongoing. We evaluate how soluble levels of the next generation immune checkpoint Lymphocyte Activation Gene-3 (sLAG-3) and its association with circulating T lymphocyte subsets could pose as a novel biomarker to predict outcome to ICI therapy. METHODS Circulating levels of sLAG3 were analyzed using multiplex immunoassay in n = 84 patients undergoing ICI therapy for advanced solid cancer, accompanied by flow cytometry analyses of peripheral blood mononuclear cells (PBMCs). RESULTS Uni- and multivariate analysis shows that patients with higher sLAG3 concentrations before ICI therapy had a significantly impaired progression-free (PFS) and overall survival (OS) (HRPFS: 1.005 [95%CI: 1.000-1.009], p = 0.039; HROS: 1.006 [95%CI: 1.001-1.011], p = 0.015). The CD4/CD8 cell ratio and its dynamics during therapy were strong predictors of PFS and OS with patients with a decreasing ratio between baseline and after 1-2 cycles having an improved median OS compared to patients with increasing values (p = 0.012, HR: 3.32). An immunological score combining sLAG3 and the CD4/CD8 ratio showed the highest predictive potential (HROS: 10.3). CONCLUSION Pending prospective validation, sLAG3 and correlating circulating T-cell subsets can be used as a non-invasive predictive marker to predict outcome to ICI therapy to help identifying ideal ICI candidates in the future.
Collapse
Affiliation(s)
- Joao Gorgulho
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | - Fabian Beier
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Tim H Brümmendorf
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
- Department of Medicine IV, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany.
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany.
| |
Collapse
|
3
|
Wang X, Liu X, Dai H, Jia J. Association of lymphocyte subsets with the efficacy and prognosis of PD‑1 inhibitor therapy in advanced gastric cancer: results from a monocentric retrospective study. BMC Gastroenterol 2024; 24:113. [PMID: 38491354 PMCID: PMC10943815 DOI: 10.1186/s12876-024-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/09/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE This retrospective study aimed to investigate the changes in peripheral blood lymphocyte subsets before and after immunotherapy in patients with advanced gastric cancer and their relationship n with the therapeutic efficacy and clinical prognosis. METHODS Peripheral blood lymphocyte subsets, including CD4 + T cells, CD8 + T cells, CD4+/CD8 + ratio, NK cells, Treg cells, and B cells, were collected from 195 patients with advanced gastric cancer who were admitted to the First Hospital of Shanxi Medical University with immunotherapy from January 2020 to October 2021, at the time of diagnosis of advanced gastric cancer, before immunotherapy and after 3 cycles of immunotherapy. T-tests were used to examine the factors influencing the patients' peripheral blood lymphocyte subsets and the changes after immunotherapy. To examine the relationship between lymphocyte subsets and treatment outcomes, ROC curves were plotted using a logistic regression. Kaplan-Meier curve was drawn, and the Log Rank test was carried out to compare the differences in PFS between the different groups. Cox proportional hazards regression model was used to analyze the factors affecting PFS after calibration of other variables. RESULTS The proportion of peripheral blood lymphocyte subsets in patients with advanced gastric cancer was affected by age and PD-L1 level. Compared to the baseline, the treatment effective group had higher proportions of CD4 + T cells, a higher CD4+/CD8 + ratio, NK cells and Treg cells, and lower proportions of CD8 + T cells and B cells in the peripheral blood after three cycles of immunotherapy. In the treatment-naive group, there were no significant differences in the lymphocyte subsets. With cut-off values of 30.60% and 18.00%, baseline CD4 + T cell and NK cell ratios were independent predictors of immunotherapy efficacy and PFS. Treg cell ratio, gender, PD-L1 levels, and MMR status all predicted PFS independently. CONCLUSION The proportion of peripheral blood lymphocyte subsets was modified in patients who responded to PD-1 inhibitors. Different lymphocyte subpopulation levels can be used as biomarkers to predict immunotherapy efficacy and clinical prognosis in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Xinyan Wang
- The First Clinical Medical College of Shanxi Medical University, No.56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoling Liu
- Department of Special Medical, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Huwei Dai
- The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
4
|
Ma M, Zheng Z, Zeng Z, Li J, Ye X, Kang W. Perioperative Enteral Immunonutrition Support for the Immune Function and Intestinal Mucosal Barrier in Gastric Cancer Patients Undergoing Gastrectomy: A Prospective Randomized Controlled Study. Nutrients 2023; 15:4566. [PMID: 37960219 PMCID: PMC10647624 DOI: 10.3390/nu15214566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE The impact of perioperative immunonutrition on patients undergoing radical gastrectomy remains undetermined. This study aimed to assess the influence of enteral immunonutrition support on postoperative immune function and intestinal mucosal barrier function following radical gastrectomy, contrasting findings with a control group to furnish evidence for perioperative enteral nutrition support. METHODS In this prospective randomized trial, 65 patients who underwent radical gastrectomy between June 2022 and June 2023 were included. Participants were allocated to either the study group (receiving enteral immunonutrition) or the control group (not receiving enteral immunonutrition). We compared postoperative rehabilitation and complications between the groups, analyzed the intestinal mucosal barrier function markers on the 3rd and 7th postoperative days, and delved deeper into peripheral blood cell immunity, inflammation, and nutritional indicators. RESULTS The cohort consisted of 30 patients in the study group and 35 in the control group, with no significant differences in demographic attributes between the two groups. On the 3rd postoperative day, the diamine oxidase, D-lactic acid, and endotoxin levels in the study group were significantly lower than those in the control group (p = 0.029, p = 0.044, and p = 0.010, respectively). By the 7th postoperative day, these levels continued to be significantly diminished in the study group (p = 0.013, p = 0.033, and p = 0.004, respectively). The times to first flatus (p = 0.012) and first bowel movement (p = 0.012) were significantly shorter in the study group. Moreover, postoperative complications in the study group were fewer than in the control group (p = 0.039). On the 7th postoperative day, the study group had lower peripheral white blood cell (WBC) levels (p = 0.020) and neutrophil-lymphocyte ratios (NLR) (p = 0.031), but displayed elevated albumin levels (p = 0.006). One month post-surgery, the CD4+T and CD8+T counts were significantly greater in the study group (p = 0.003 and p = 0.012, respectively). Correlation analyses indicated that NLR and complications were associated with endotoxin levels. CONCLUSION Administering perioperative enteral immunonutrition enhances postoperative immune and intestinal mucosal barrier functions in patients undergoing radical gastrectomy. This effect leads to diminished inflammatory responses, a decreased rate of postoperative complications, and accelerated patient recovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Xu S, Zhu Q, Wu L, Wang Y, Wang J, Zhu L, Zheng S, Hang J. Association of the CD4 +/CD8 + ratio with response to PD-1 inhibitor-based combination therapy and dermatological toxicities in patients with advanced gastric and esophageal cancer. Int Immunopharmacol 2023; 123:110642. [PMID: 37499395 DOI: 10.1016/j.intimp.2023.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The host immune system affects the treatment response to immune checkpoint inhibitors and can be reflected by circulating immune cells. This study aimed to evaluate whether circulating T cell subtypes are correlated with clinical response and dermatological toxicities in patients with advanced gastric and esophageal cancer receiving PD-1 inhibitor-based combination therapy (n = 203). In the training cohort, Eastern Cooperative Oncology Group performance status (ECOG PS), PD-L1 expression, antibiotic use, and CD4+/CD8+ ratio were identified as independent prognostic factors in these patients, using a Cox regression model. A nomogram to predict the overall survival (OS) and survival probabilities was constructed using these factors. The nomogram showed good discrimination ability (C-index, 0.767) and was externally confirmed in the validation and test cohorts. Kaplan-Meier analysis showed that median OS in patients with a CD4+/CD8+ ratio ≥1.10 was 6.2 months, which was significantly shorter than that in patients with a CD4+/CD8+ ratio <1.10 (P < 0.001). Patients with a CD4+/CD8+ ratio <1.10 had a superior objective response (43.8% vs. 23.1%) and disease control (72.9% vs. 59.0%) rate, relative to those with ratio ≥ 1.10. In addition, PD-L1 expression, corticosteroid use, and CD4+/CD8+ ratio can independently predict dermatological toxicities. In conclusion, baseline CD4+/CD8+ ratio is a potential prognostic factor for patients with advanced gastric and esophageal cancer treated with PD-1 inhibitor-based combination therapy, and can independently predict dermatological toxicities. In addition, a nomogram incorporating CD4+/CD8+ ratio, ECOG PS, PD-L1 expression, and antibiotic use can predict OS with considerable accuracy.
Collapse
Affiliation(s)
- Shuangwei Xu
- The First Clinical Medical College of Nanchang University, Nanchang 116000, China
| | - Qiuwei Zhu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Lixia Wu
- Shanghai JingAn District ZhaBei Central Hospital, Shanghai 200070, China
| | - Yaoyao Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jingmiao Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Lina Zhu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Shanshan Zheng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Junjie Hang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China.
| |
Collapse
|
6
|
Turner RJ, Guy TV, Geraghty NJ, Splitt A, Watson D, Brungs D, Carolan MG, Miller AA, de Leon JF, Aghmesheh M, Sluyter R. Low Pretreatment CD4 +:CD8 + T Cell Ratios and CD39 +CD73 +CD19 + B Cell Proportions Are Associated with Improved Relapse-Free Survival in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:12538. [PMID: 37628721 PMCID: PMC10454544 DOI: 10.3390/ijms241612538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The ectonucleotidases CD39 and CD73 are present on immune cells and play important roles in cancer progression by suppressing antitumour immunity. As such, CD39 and CD73 on peripheral blood mononuclear cells (PBMCs) are emerging as potential biomarkers to predict disease outcomes and treatment responses in cancer patients. This study aimed to examine T and B cells, including CD39 and CD73 expressing subsets, by flow cytometry in PBMCs from 28 patients with head and neck squamous cell carcinoma (HNSCC) and to assess the correlation with the treatment modality, human papillomavirus (HPV) status, and relapse-free survival (RFS). The PBMCs were examined pre-, mid-, and post-radiotherapy with concurrent cisplatin chemotherapy or anti-epidermal growth factor receptor antibody (cetuximab) therapy. Combination radiotherapy caused changes to T and B cell populations, including CD39 and CD73 expressing subsets, but no such differences were observed between concurrent chemotherapy and cetuximab. Pretreatment PBMCs from HPV+ patients contained increased proportions of CD39-CD73-CD4+ T cells and reduced proportions of CD39-/+CD73+CD4+ T cells compared to the equivalent cells from HPV- patients. Notably, the pretreatment CD4+:CD8+ T cell ratios and CD39+CD73+CD19+ B cell proportions below the respective cohort medians corresponded with an improved RFS. Collectively, this study supports the notion that CD39 and CD73 may contribute to disease outcomes in HNSCC patients and may assist as biomarkers, either alone or as part of immune signatures, in HNSCC. Further studies of CD39 and CD73 on PBMCs from larger cohorts of HNSCC patients are warranted.
Collapse
Affiliation(s)
- Ross J. Turner
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Thomas V. Guy
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Nicholas J. Geraghty
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Ashleigh Splitt
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| | - Daniel Brungs
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Martin G. Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Andrew A. Miller
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | | | - Morteza Aghmesheh
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500, Australia; (A.S.); (D.B.); (M.G.C.); (A.A.M.); (M.A.)
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; (R.J.T.); (N.J.G.); (D.W.)
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia;
| |
Collapse
|
7
|
Wang J, Li RZ, Wang WJ, Pan HD, Xie C, Yau LF, Wang XX, Long WL, Chen RH, Liang TL, Ma LR, Li JX, Huang JM, Wu QB, Liu L, He JX, Leung ELH. CERS4 predicts positive anti-PD-1 response and promotes immunomodulation through Rhob-mediated suppression of CD8 +Tim3 + exhausted T cells in non-small cell lung cancer. Pharmacol Res 2023; 194:106850. [PMID: 37453674 DOI: 10.1016/j.phrs.2023.106850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the main malignant tumors with high mortality and short survival time. Immunotherapy has become the standard treatment for advanced NSCLC, but it has the problems of drug resistance and low response rate. Therefore, obtaining effective biomarkers to predict and enhance immune checkpoint inhibitors (ICIs) efficacy in NSCLC is important. Sphingolipid metabolism is recently found to be closely involved in tumor immunotherapy. CERS4, an important sphingolipid metabolizing enzyme, is positively correlated with the efficacy of anti-PD-1 therapy for NSCLC. Upregulation of CERS4 expression could improve the efficacy of anti-PD-1 therapy for NSCLC. High expression of CERS4 could downregulate the expression of Rhob in tumor. Significantly, the ratio of CD4+/CD8+ T cell increased and the ratio of Tim-3+/CD8+ T cell decreased in spleen and peripheral blood cells. When Rhob was knocked out, the efficacy of PD-1 mAb treatment increased, and the frequency of Tim-3+ CD8+ T cell decreased. This finding further confirmed the role of sphingolipid metabolites in regulating the immunotherapeutic function of NSCLC. These metabolites may improve the efficacy of PD-1 mAb in NSCLC by regulating the CERS4/Rhob/Tim-3 axis. Overall, this study provided a potential and effective target for predicting and improving the efficacy of ICIs for NSCLC. It also provided a new perspective for the study on the mechanisms of ICIs resistance for NSCLC.
Collapse
Affiliation(s)
- Jian Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China; Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Run-Ze Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Wen-Jun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hu-Dan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China. State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Lee-Fong Yau
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xia Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Wei-Li Long
- Department of Oncology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Rui-Hong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Tu-Liang Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Lin-Rui Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jia-Xin Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China. State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China
| | - Qi-Biao Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Jian-Xing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China. State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau (SAR), China; Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China.
| |
Collapse
|
8
|
Geng R, Tang H, You T, Xu X, Li S, Li Z, Liu Y, Qiu W, Zhou N, Li N, Ge Y, Guo F, Sun Y, Wang Y, Li T, Bai C. Peripheral CD8+CD28+ T lymphocytes predict the efficacy and safety of PD-1/PD-L1 inhibitors in cancer patients. Front Immunol 2023; 14:1125876. [PMID: 36969245 PMCID: PMC10038730 DOI: 10.3389/fimmu.2023.1125876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundProgrammed cell death protein-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors works by reactivating immune cells. Considering the accessibility of noninvasive liquid biopsies, it is advisable to employ peripheral blood lymphocyte subsets to predict immunotherapy outcomes.MethodsWe retrospectively enrolled 87 patients with available baseline circulating lymphocyte subset data who received first-line PD-1/PD-L1 inhibitors at Peking Union Medical College Hospital between May 2018 and April 2022. Immune cell counts were determined by flow cytometry.ResultsPatients who responded to PD-1/PD-L1 inhibitors had significantly higher circulating CD8+CD28+ T-cell counts (median [range] count: 236 [30-536] versus 138 [36-460]/μL, p < 0.001). Using 190/μL as the cutoff value, the sensitivity and specificity of CD8+CD28+ T cells for predicting immunotherapy response were 0.689 and 0.714, respectively. Furthermore, the median progression-free survival (PFS, not reached versus 8.7 months, p < 0.001) and overall survival (OS, not reached versus 16.2 months, p < 0.001) were significantly longer in the patients with higher CD8+CD28+ T-cell counts. However, the CD8+CD28+ T-cell level was also associated with the incidence of grade 3-4 immune-related adverse events (irAEs). The sensitivity and specificity of CD8+CD28+ T cells for predicting irAEs of grade 3-4 were 0.846 and 0.667, respectively, at the threshold of CD8+CD28+ T cells ≥ 309/μL.ConclusionsHigh circulating CD8+CD28+ T-cell levels is a potential biomarker for immunotherapy response and better prognosis, while excessive CD8+CD28+ T cells (≥ 309/μL) may also indicate the emergence of severe irAEs.
Collapse
Affiliation(s)
- Ruixuan Geng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Tang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting You
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuxiu Xu
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sijian Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Zepeng Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Liu
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Qiu
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuping Ge
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fuping Guo
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuhong Sun
- Department of Radiation Oncology, Dandong First Hospital, Dandong, Liaoning, China
| | - Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yingyi Wang, ; Taisheng Li,
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yingyi Wang, ; Taisheng Li,
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Zeng Z, Liu Z, Li J, Sun J, Ma M, Ye X, Yu J, Kang W. Baseline splenic volume as a biomarker for clinical outcome and circulating lymphocyte count in gastric cancer. Front Oncol 2023; 12:1065716. [PMID: 36793344 PMCID: PMC9923954 DOI: 10.3389/fonc.2022.1065716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Background The spleen is the largest peripheral lymphoid organ in the body. Studies have implicated the spleen in the development of cancer. However, it is unknown whether splenic volume (SV) is associated with the clinical outcome of gastric cancer. Methods Data of gastric cancer patients treated with surgical resection were retrospectively analyzed. Patients were divided into three groups: underweight, normal-weight and overweight. Overall survival was compared in patients with high and low splenic volume. The correlation between splenic volume and peripheral immune cells were analyzed. Results Of 541 patients, 71.2% were male and the median age was 60. Underweight, normal-weight and overweight patients accounted for 5.4%, 62.3% and 32.3%, respectively. High splenic volume was associated with unfavorable prognosis across the three groups. In addition, the increase of splenic volume during neoadjuvant chemotherapy was not associated with prognosis. The baseline splenic volume was negatively correlated with lymphocytes (r=-0.21, p<0.001) and positively correlated with NLR (neutrophil-to-lymphocyte ratio) (r=0.24, p<0.001). In a group of patients (n=56), splenic volume was found to have negative correlation with CD4+T cells (r=-0.27, p=0.041) and NK cells (r=-0.30, p=0.025). Conclusions The presence of high splenic volume is a biomarker of unfavorable prognosis and reduced circulating lymphocytes in gastric cancer.
Collapse
|
10
|
Wang H, Yin X, Ma K, Wang Y, Fang T, Zhang Y, Xue Y. Nomogram Based on Preoperative Fibrinogen and Systemic Immune-Inflammation Index Predicting Recurrence and Prognosis of Patients with Borrmann Type III Advanced Gastric Cancer. J Inflamm Res 2023; 16:1059-1075. [PMID: 36936348 PMCID: PMC10019083 DOI: 10.2147/jir.s404585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Background and Objectives The prognosis is known to differ significantly among advanced gastric cancer (AGC) with Borrmann type III. This study aimed to evaluate the prognosis of these patients more individually. Methods We selected 542 AGC patients with Borrmann type III. We used the receiver operating characteristic curve to analyze the cutoff values of inflammation indexes, and used Kaplan-Meier and Log rank tests to analyze recurrence-free survival (RFS) and overall survival (OS). The independent risk factors for recurrence and prognosis were analyzed by Cox proportional hazards regression model. The nomogram models were constructed by R studio. Results Patients with high preoperative fibrinogen (F) and systemic immune-inflammation index (SII) levels had worse RFS and OS and higher risk of postoperative locoregional recurrence, hematogenous metastasis and lymph node metastasis. F and SII can combine with different clinicopathological features (all P<0.05) to construct nomograms to predict 5-year recurrence and prognosis, which both were superior to pTNM stage alone. Conclusion The nomogram models based on F and SII can evaluate AGC with Borrmann type III postoperative recurrence and prognosis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Keru Ma
- Department of Thoracic Surgery, Esophagus and Mediastinum, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yao Zhang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Yingwei Xue, Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, People’s Republic of China, Tel +86-13304646901, Email
| |
Collapse
|
11
|
The Association between Blood Indexes and Immune Cell Concentrations in the Primary Tumor Microenvironment Predicting Survival of Immunotherapy in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14153608. [PMID: 35892867 PMCID: PMC9332606 DOI: 10.3390/cancers14153608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The tumor microenvironment plays a vital role in tumor progression and treatment response. However, the association between immune cell concentrations in primary tumor and blood indexes remains unknown. Thus, we enrolled patients with gastric cancer (GC) in two cohorts. We used multiplexed immunohistochemistry to quantify in situ proteins covering rare cell types at sub-cellular resolution in 80 patients with GC in the first cohort. A high correlation between the LMR (lymphocyte-to-monocyte ratio)/NLR (neutrophil-to-lymphocyte ratio) and tumor immune microenvironment was found. The density of exhausted CD8 T cells including CD8+PD1−TIM3+, CD8+LAG3+PD1+, CD8+LAG3+PD1−, CD8+LAG3+PD1+TIM3− was negatively associated with LMR and positively associated with NLR (p < 0.05). Additionally, the higher density of macrophages in tumor core was associated with a higher platelet-to-lymphocyte ratio and systemic immune-inflammation index. Furthermore, we validated the prognostic value of LMR and NLR in an independent cohort of 357 gastric cancer patients receiving immunotherapy. Higher LMR at baseline was significantly associated with superior immune-related PFS (irPFS) and a trend of superior immune-related OS (irOS). Higher NLR was associated with inferior irOS. In conclusion, blood indexes were associated with immune cells infiltrating in primary tumors of GC. NLR and LMR are associated with the density of exhausted CD8+ T immune cells, which leads to prognostic values of immunotherapy.
Collapse
|
12
|
Zhang C, Chong X, Jiang F, Gao J, Chen Y, Jia K, Fan M, Liu X, An J, Li J, Zhang X, Shen L. Plasma extracellular vesicle derived protein profile predicting and monitoring immunotherapeutic outcomes of gastric cancer. J Extracell Vesicles 2022; 11:e12209. [PMID: 35362262 PMCID: PMC8971562 DOI: 10.1002/jev2.12209] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/03/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibitor (ICI)-based immunotherapy brought new hope for gastric cancer (GC) treatment. However, due to the lack of proper biomarkers, patient selection and outcome prediction for GC's immunotherapy remain unsatisfying. In this study, through applying an extracellular vesicle (EV) protein expression array, we assessed the correlation of plasma EV-derived protein spectrum with outcomes of ICI-related therapeutic combinations. Plasma from 112 GC patients received ICI-related therapies were investigated retrospectively/prospectively as three cohorts. We identified four plasma EV-derived proteins (ARG1/CD3/PD-L1/PD-L2) from 42 crucial candidate proteins and combined them as an EV-score that robustly predicting immunotherapeutic outcomes at baseline and dynamically monitoring disease progression along with treatment. High EV-score reflected microenvironmental features of stronger antitumour immunity, characterized by more activated CD8+ T/NK cells, higher TH1/TH2 ratio and higher expressions of IFN-γ/perforin/granzymes in paired peripheral blood, which were verified by dataset analysis and in vivo experiments. EV-score≥1 GC received more therapeutic benefits from ICIs, while EV-score < 1 GC potentially benefited more from ICIs combining HER2-targeted therapies. Collectively, through proposing a plasma EV-score on protein level that powerfully predicting and monitoring GC's immunotherapeutic outcomes, our work facilitated clinical patient selection and decision-makings, and provided mechanistical insights for immunotherapy-related microenvironmental changes and improvements for current ICI-regimens.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Fangli Jiang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Keren Jia
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Meng Fan
- Research and Development DepartmentEVbio Technology Co., Ltd.BeijingChina
| | - Xuan Liu
- Research and Development DepartmentEVbio Technology Co., Ltd.BeijingChina
| | - Jin An
- Research and Development DepartmentEVbio Technology Co., Ltd.BeijingChina
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| |
Collapse
|
13
|
Ding LH, Yu Y, Edmondson EF, Weil MM, Pop LM, McCarthy M, Ullrich RL, Story MD. Transcriptomic analysis links hepatocellular carcinoma (HCC) in HZE ion irradiated mice to a human HCC subtype with favorable outcomes. Sci Rep 2021; 11:14052. [PMID: 34234215 PMCID: PMC8263559 DOI: 10.1038/s41598-021-93467-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022] Open
Abstract
High-charge, high-energy ion particle (HZE) radiations are extraterrestrial in origin and characterized by high linear energy transfer (high-LET), which causes more severe cell damage than low-LET radiations like γ-rays or photons. High-LET radiation poses potential cancer risks for astronauts on deep space missions, but the studies of its carcinogenic effects have relied heavily on animal models. It remains uncertain whether such data are applicable to human disease. Here, we used genomics approaches to directly compare high-LET radiation-induced, low-LET radiation-induced and spontaneous hepatocellular carcinoma (HCC) in mice with a human HCC cohort from The Cancer Genome Atlas (TCGA). We identified common molecular pathways between mouse and human HCC and discovered a subset of orthologous genes (mR-HCC) that associated high-LET radiation-induced mouse HCC with a subgroup (mrHCC2) of the TCGA cohort. The mrHCC2 TCGA cohort was more enriched with tumor-suppressing immune cells and showed a better prognostic outcome than other patient subgroups.
Collapse
Affiliation(s)
- Liang-Hao Ding
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yongjia Yu
- Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Elijah F Edmondson
- Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Michael M Weil
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Laurentiu M Pop
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Michael D Story
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Yashim A, Obazee D, Ajani O, Adewole O, Swem C, Abiodun P, Sanni O. Altered leukogram and hematological parameters among leukemia patients. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_24_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|