1
|
Ghanem P, Murray JC, Hsu M, Guo MZ, Ettinger DS, Feliciano J, Forde P, Hann CL, Lam VK, Levy B, Anagnostou V, Brahmer JR, Marrone KA. Clinical and Genomic Characterization of Long-Term Responders Receiving Immune Checkpoint Blockade for Metastatic Non-Small-Cell Lung Cancer. Clin Lung Cancer 2024; 25:109-118. [PMID: 38161136 DOI: 10.1016/j.cllc.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Understand from a real-world cohort the unique clinical and genomic determinants of a durable response to immune checkpoint inhibitors (ICIs). MATERIALS AND METHODS This is a retrospective study of patients with NSCLC who received any ICI-based regimen as first or second line therapy. Long-term responders (LTR) achieved an overall survival (OS) ≥ 3 years from time of treatment start, while nonresponders (NR) were patients who had an OS of 6 to 12 months from time of treatment start. Clinical and demographic covariables were collected from electronic medical records. Fisher's exact test and Mann-Whitney test were used to analyze the association of a long-term response to ICI in relation to clinical and genomic variables. All P-values were considered significant at P-value < .05. RESULTS A total of 72 patients were included in this study (LTR n = 37, NR n = 35). There were no significant differences in age, sex, race, and BMI between groups. The presence of liver metastases at the time of ICI initiation and PD-L1 status were not associated with LTR to ICIs. Patients in the LTR were more likely to experience irAEs at 3-,6- and 12-months. KRAS mutant tumors were numerically more common in the LTR group (n = 13 vs. 8). CONCLUSION We observe no strong clinical and biomarkers of a prolonged response to ICIs. Additional large prospective cohort studies are needed to investigate the genomic footprint of long-term responders.
Collapse
Affiliation(s)
- Paola Ghanem
- Department of Medical Oncology, Johns Hopkins University, Baltimore, MD
| | | | - Melinda Hsu
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH
| | - Matthew Z Guo
- Department of Medical Oncology, Johns Hopkins University, Baltimore, MD
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhao W, Kepecs B, Mahadevan NR, Segerstolpe A, Weirather JL, Besson NR, Giotti B, Soong BY, Li C, Vigneau S, Slyper M, Wakiro I, Jane-Valbuena J, Ashenberg O, Rotem A, Bueno R, Rozenblatt-Rosen O, Pfaff K, Rodig S, Hata AN, Regev A, Johnson BE, Tsankov AM. A cellular and spatial atlas of TP53 -associated tissue remodeling in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546977. [PMID: 37425718 PMCID: PMC10327017 DOI: 10.1101/2023.06.28.546977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
TP53 is the most frequently mutated gene across many cancers and is associated with shorter survival in lung adenocarcinoma (LUAD). To define how TP53 mutations affect the LUAD tumor microenvironment (TME), we constructed a multi-omic cellular and spatial tumor atlas of 23 treatment-naïve human lung tumors. We found that TP53 -mutant ( TP53 mut ) malignant cells lose alveolar identity and upregulate highly proliferative and entropic gene expression programs consistently across resectable LUAD patient tumors, genetically engineered mouse models, and cell lines harboring a wide spectrum of TP53 mutations. We further identified a multicellular tumor niche composed of SPP1 + macrophages and collagen-expressing fibroblasts that coincides with hypoxic, pro-metastatic expression programs in TP53 mut tumors. Spatially correlated angiostatic and immune checkpoint interactions, including CD274 - PDCD1 and PVR - TIGIT , are also enriched in TP53 mut LUAD tumors, which may influence response to checkpoint blockade therapy. Our methodology can be further applied to investigate mutation-specific TME changes in other cancers.
Collapse
|
3
|
McMahon DJ, McLaughlin R, Naidoo J. Is Immunotherapy Beneficial in Patients with Oncogene-Addicted Non-Small Cell Lung Cancers? A Narrative Review. Cancers (Basel) 2024; 16:527. [PMID: 38339280 PMCID: PMC10854575 DOI: 10.3390/cancers16030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 20 years, there has been a paradigm shift in the care of patients with non-small cell lung cancer (NSCLC), who now have a range of systemic treatment options including targeted therapy, chemotherapy, immunotherapy (ICI), and antibody-drug conjugates (ADCs). A proportion of these cancers have single identifiable alterations in oncogenes that drive their proliferation and cancer progression, known as "oncogene-addiction". These "driver alterations" are identified in approximately two thirds of patients with lung adenocarcinomas, via next generation sequencing or other orthogonal tests. It was noted in the early clinical development of ICIs that patients with oncogene-addicted NSCLC may have differential responses to ICI. The toxicity signal for patients with oncogene-addicted NSCLC when treated with ICIs also seemed to differ depending on the alteration present and the specific targeted agent used. Developing a greater understanding of the underlying reasons for these clinical observations has become an important area of research in NSCLC. In this review, we analyze the efficacy and safety of ICI according to specific mutations, and consider possible future directions to mitigate safety concerns and improve the outcomes for patients with oncogene-addicted NSCLC.
Collapse
Affiliation(s)
- David John McMahon
- Trinity St James’s Cancer Institute, St. James’s Hospital, James’s Street, D08 NHY1 Dublin, Ireland
| | | | - Jarushka Naidoo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Beaumont RCSI Cancer Centre, D09 V2NO Dublin, Ireland
- RCSI University of Health Sciences, D02 YN77 Dublin, Ireland
- Beaumont Hospital, D09 Y177 Dublin, Ireland
| |
Collapse
|
4
|
Zhou R, Tong F, Zhang Y, Zhang R, Bin Y, Zhang S, Yang N, Dong X. Genomic alterations associated with pseudoprogression and hyperprogressive disease during anti-PD1 treatment for advanced non-small-cell lung cancer. Front Oncol 2023; 13:1231094. [PMID: 38023206 PMCID: PMC10667039 DOI: 10.3389/fonc.2023.1231094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction This study aimed to elucidate the relationship between dynamic genomic mutation alteration and pseudoprogression (PsPD)/hyperprogressive disease (HPD) in immunotherapy-treated advanced non-small-cell lung cancer (NSCLC), to provide clinical evidence for identifying and distinguishing between PsPD and HPD. Method Patients with advanced NSCLC who were treated with anti-PD1 were enrolled. Whole blood was collected at baseline and post image progression. Serum was separated and sequenced using 425-panel next-generation sequencing analysis (NGS). Results NGS revealed that not only single gene mutations were associated with PsPD/HPD before treatment, dynamic monitoring of the whole-blood genome mutation spectrum also varied greatly. Mutational burden, allele frequency%, and relative circulating tumor DNA abundance indicated that the fold change after image progression was much higher in the HPD group. Discussion The gene mutation profiles of PsPD and HPD not only differed before treatment, but higher genome mutation spectrum post image progression indicated true disease progression in patients with HPD. This suggests that dynamic whole-genome mutation profile monitoring as NGS can distinguish PsPD from HPD more effectively than single gene detection, providing a novel method for guiding clinical immune treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruigang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yawen Bin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Vokes NI, Pan K, Le X. Efficacy of immunotherapy in oncogene-driven non-small-cell lung cancer. Ther Adv Med Oncol 2023; 15:17588359231161409. [PMID: 36950275 PMCID: PMC10026098 DOI: 10.1177/17588359231161409] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/13/2023] [Indexed: 03/20/2023] Open
Abstract
For advanced metastatic non-small-lung cancer, the landscape of actionable driver alterations is rapidly growing, with nine targetable oncogenes and seven approvals within the last 5 years. This accelerated drug development has expanded the reach of targeted therapies, and it may soon be that a majority of patients with lung adenocarcinoma will be eligible for a targeted therapy during their treatment course. With these emerging therapeutic options, it is important to understand the existing data on immune checkpoint inhibitors (ICIs), along with their efficacy and safety for each oncogene-driven lung cancer, to best guide the selection and sequencing of various therapeutic options. This article reviews the clinical data on ICIs for each of the driver oncogene defined lung cancer subtypes, including efficacy, both for ICI as monotherapy or in combination with chemotherapy or radiation; toxicities from ICI/targeted therapy in combination or in sequence; and potential strategies to enhance ICI efficacy in oncogene-driven non-small-cell lung cancers.
Collapse
Affiliation(s)
- Natalie I. Vokes
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Kelsey Pan
- Department of Cancer Medicine, MD Anderson
Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical
Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030,
USA
| |
Collapse
|
6
|
Hong L, Aminu M, Li S, Lu X, Petranovic M, Saad MB, Chen P, Qin K, Varghese S, Rinsurongkawong W, Rinsurongkawong V, Spelman A, Elamin YY, Negrao MV, Skoulidis F, Gay CM, Cascone T, Gandhi SJ, Lin SH, Lee PP, Carter BW, Wu CC, Antonoff MB, Sepesi B, Lewis J, Gibbons DL, Vaporciyan AA, Le X, Jack Lee J, Roy-Chowdhuri S, Routbort MJ, Gainor JF, Heymach JV, Lou Y, Wu J, Zhang J, Vokes NI. Efficacy and clinicogenomic correlates of response to immune checkpoint inhibitors alone or with chemotherapy in non-small cell lung cancer. Nat Commun 2023; 14:695. [PMID: 36755027 PMCID: PMC9908867 DOI: 10.1038/s41467-023-36328-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The role of combination chemotherapy with immune checkpoint inhibitors (ICI) (ICI-chemo) over ICI monotherapy (ICI-mono) in non-small cell lung cancer (NSCLC) remains underexplored. In this retrospective study of 1133 NSCLC patients, treatment with ICI-mono vs ICI-chemo associate with higher rates of early progression, but similar long-term progression-free and overall survival. Sequential vs concurrent ICI and chemotherapy have similar long-term survival, suggesting no synergism from combination therapy. Integrative modeling identified PD-L1, disease burden (Stage IVb; liver metastases), and STK11 and JAK2 alterations as features associate with a higher likelihood of early progression on ICI-mono. CDKN2A alterations associate with worse long-term outcomes in ICI-chemo patients. These results are validated in independent external (n = 89) and internal (n = 393) cohorts. This real-world study suggests that ICI-chemo may protect against early progression but does not influence overall survival, and nominates features that identify those patients at risk for early progression who may maximally benefit from ICI-chemo.
Collapse
Affiliation(s)
- Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shenduo Li
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Xuetao Lu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milena Petranovic
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Maliazurina B Saad
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kang Qin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan Varghese
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Waree Rinsurongkawong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vadeerat Rinsurongkawong
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy Spelman
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saumil J Gandhi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Percy P Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett W Carter
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carol C Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeff Lewis
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sinchita Roy-Chowdhuri
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark J Routbort
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Jia Wu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Natalie I Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Xiao Y, Liu P, Wei J, Zhang X, Guo J, Lin Y. Recent progress in targeted therapy for non-small cell lung cancer. Front Pharmacol 2023; 14:1125547. [PMID: 36909198 PMCID: PMC9994183 DOI: 10.3389/fphar.2023.1125547] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The high morbidity and mortality of non-small cell lung cancer (NSCLC) have always been major threats to people's health. With the identification of carcinogenic drivers in non-small cell lung cancer and the clinical application of targeted drugs, the prognosis of non-small cell lung cancer patients has greatly improved. However, in a large number of non-small cell lung cancer cases, the carcinogenic driver is unknown. Identifying genetic alterations is critical for effective individualized therapy in NSCLC. Moreover, targeted drugs are difficult to apply in the clinic. Cancer drug resistance is an unavoidable obstacle limiting the efficacy and application of targeted drugs. This review describes the mechanisms of targeted-drug resistance and newly identified non-small cell lung cancer targets (e.g., KRAS G12C, NGRs, DDRs, CLIP1-LTK, PELP1, STK11/LKB1, NFE2L2/KEAP1, RICTOR, PTEN, RASGRF1, LINE-1, and SphK1). Research into these mechanisms and targets will drive individualized treatment of non-small cell lung cancer to generate better outcomes.
Collapse
Affiliation(s)
- Yanxia Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.,Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
8
|
Veccia A, Dipasquale M, Kinspergher S, Monteverdi S, Girlando S, Barbareschi M, Caffo O. Impact of KRAS Mutations on Clinical Outcomes of Patients with Advanced Non-Squamous Non-Small Cell Lung Cancer Receiving Anti-PD-1/PD-L1 Therapy. Target Oncol 2023; 18:129-138. [PMID: 36482151 PMCID: PMC9928930 DOI: 10.1007/s11523-022-00934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND KRAS is the most frequently mutated gene in non-small cell lung cancer (NSCLC), however conflicting data are available on its role as a biomarker. OBJECTIVE The aim of our work was to investigate the impact of KRAS mutations on response and survival outcomes in advanced non-squamous NSCLC patients treated with immune checkpoint inhibitors alone or in combination with chemotherapy. PATIENTS AND METHODS We retrospectively identified 119 patients, most of whom (58%) were KRAS wild type. For each patient we evaluated overall survival (OS), progression-free survival (PFS), and disease control rate (DCR). An exploratory analysis was performed among KRAS mutated patients to investigate the impact of specific KRAS mutations on response and survival outcomes. RESULTS After a median follow-up of 10.3 months, the median OS was 14.9 months (95% confidence interval [CI] 7.6-22.7) in wild-type KRAS patients versus 14.7 months (95% CI 8.0-19.5) in mutated KRAS patients (p = 0.529). No differences were detected between the two groups in terms of PFS and DCR. Patients with a KRAS G12C mutation reported survival and response outcomes that were not statistically different from those of patients with other KRAS mutations. CONCLUSION Our data confirmed that KRAS mutational status is not associated with survival and response outcomes in advanced non-squamous NSCLC patients treated with immunotherapy alone or combined with chemotherapy.
Collapse
Affiliation(s)
- Antonello Veccia
- Medical Oncology, Santa Chiara Hospital, Largo Medaglie d’Oro 1, 38122 Trento, Italy
| | | | - Stefania Kinspergher
- Medical Oncology, Santa Chiara Hospital, Largo Medaglie d’Oro 1, 38122 Trento, Italy
| | - Sara Monteverdi
- Medical Oncology, Santa Chiara Hospital, Largo Medaglie d’Oro 1, 38122 Trento, Italy
| | | | | | - Orazio Caffo
- Medical Oncology, Santa Chiara Hospital, Largo Medaglie d’Oro 1, 38122 Trento, Italy
| |
Collapse
|
9
|
Liu C, Zheng S, Wang Z, Wang S, Wang X, Yang L, Xu H, Cao Z, Feng X, Xue Q, Wang Y, Sun N, He J. KRAS-G12D mutation drives immune suppression and the primary resistance of anti-PD-1/PD-L1 immunotherapy in non-small cell lung cancer. Cancer Commun (Lond) 2022; 42:828-847. [PMID: 35811500 PMCID: PMC9456691 DOI: 10.1002/cac2.12327] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) and its ligand PD-L1 have demonstrated potency towards treating patients with non-small cell lung carcinoma (NSCLC), the potential association between Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene substitutions and the efficacy of ICIs remains unclear. In this study, we aimed to find point mutations in the KRAS gene resistant to ICIs and elucidate resistance mechanism. METHODS The association between KRAS variant status and the efficacy of ICIs was explored with a clinical cohort (n = 74), and confirmed with a mouse model. In addition, the tumor immune microenvironment (TIME) of KRAS-mutant NSCLC, such as CD8+ tumor-infiltrating lymphocytes (TILs) and PD-L1 level, was investigated. Cell lines expressing classic KRAS substitutions were used to explore signaling pathway activation involved in the formation of TIME. Furthermore, interventions that improved TIME were developed to increase responsiveness to ICIs. RESULTS We observed the inferior efficacy of ICIs in KRAS-G12D-mutant NSCLC. Based upon transcriptome data and immunostaining results from KRAS-mutant NSCLC, KRAS-G12D point mutation negatively correlated with PD-L1 level and secretion of chemokines CXCL10/CXCL11 that led to a decrease in CD8+ TILs, which in turn yielded an immunosuppressive TIME. The analysis of cell lines overexpressing classic KRAS substitutions further revealed that KRAS-G12D mutation suppressed PD-L1 level via the P70S6K/PI3K/AKT axis and reduced CXCL10/CXCL11 levels by down-regulating high mobility group protein A2 (HMGA2) level. Notably, paclitaxel, a chemotherapeutic agent, upregulated HMGA2 level, and in turn, stimulated the secretion of CXCL10/CXCL11. Moreover, PD-L1 blockade combined with paclitaxel significantly suppressed tumor growth compared with PD-L1 inhibitor monotherapy in a mouse model with KRAS-G12D-mutant lung adenocarcinoma. Further analyses revealed that the combined treatment significantly enhanced the recruitment of CD8+ TILs via the up-regulation of CXCL10/CXCL11 levels. Results of clinical study also revealed the superior efficacy of chemo-immunotherapy in patients with KRAS-G12D-mutant NSCLC compared with ICI monotherapy. CONCLUSIONS Our study elucidated the molecular mechanism by which KRAS-G12D mutation drives immunosuppression and enhances resistance of ICIs in NSCLC. Importantly, our findings demonstrate that ICIs in combination with chemotherapy may be more effective in patients with KRAS-G12D-mutant NSCLC.
Collapse
Affiliation(s)
- Chengming Liu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Sufei Zheng
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zhanyu Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Sihui Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xinfeng Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Lu Yang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Haiyan Xu
- Department of Comprehensive OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Zheng Cao
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xiaoli Feng
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Qi Xue
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Yan Wang
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Nan Sun
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jie He
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
10
|
Chen W, Guo F, Ren Z, Wang L, Li T, Hou X. Aptamer-siRNA chimera and gold nanoparticle modified collagen membrane for the treatment of malignant pleural effusion. Front Bioeng Biotechnol 2022; 10:973892. [PMID: 36082168 PMCID: PMC9445489 DOI: 10.3389/fbioe.2022.973892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Malignant pleural effusion is one of the most common complications of advanced lung cancer and there is no effective clinical treatment at present. Here, we constructed an aptamer-siRNA chimeras/PEI/PEG/gold nanoparticle (AuNP)/collagen membrane that can progressively activate T cells by layer by layer assembly. Electron microscope showed this collagen membrane could be divided into 10 layers with a total thickness of 50–80μm, and AuNPs could be observed. Aptamer-siRNA chimeras could bind specifically to OX40+ cells and silencing programmed death receptor-1 (PD-1) gene. In vitro experiments demonstrated that chimeras/PEI/PEG/AuNPs gradually activated T cells to continuously kill lung adenocarcinoma cells in malignant pleural effusion. Animal experiments showed that chimeras/PEI/PEG/AuNP/collagen membrane effectively treated malignant pleural effusion. Compared with PD-1 inhibitor group, the number of cancer cells, ki-67 proliferation index and CD44 expression in the pleural effusion was significantly decreased and the lymphocyte/cancer cell ratio was significantly increased in the chimeras/AuNP-CM group. Flow cytometry showed that compared with PD-1 inhibitor group, T cell number in the chimeras/AuNP-CM group was significantly increased, while the proportion of PD-1+ T cells was markedly decreased. In conclusion, we constructed an chimeras/PEI/PEG/AuNP/collagen membrane, which was more effective in the treatment of malignant pleural effusion, and had less side effects than PD-1 inhibitors.
Collapse
Affiliation(s)
- Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fengjie Guo
- Outpatient Department, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhipeng Ren
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linghui Wang
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tinghui Li
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Tinghui Li, ; Xiaobin Hou,
| | - Xiaobin Hou
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Tinghui Li, ; Xiaobin Hou,
| |
Collapse
|
11
|
Daily Practice Assessment of KRAS Status in NSCLC Patients: A New Challenge for the Thoracic Pathologist Is Right around the Corner. Cancers (Basel) 2022; 14:cancers14071628. [PMID: 35406400 PMCID: PMC8996900 DOI: 10.3390/cancers14071628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary RAS mutation is the most frequent oncogenic alteration in human cancers and KRAS is the most frequently mutated, notably in non-small cell lung carcinomas (NSCLC). Various attempts to inhibit KRAS in the past were unsuccessful in these latter tumors. However, recently, several small molecules (AMG510, MRTX849, JNJ-74699157, and LY3499446) have been developed to specifically target KRAS G12C-mutated tumors, which seems promising for patient treatment and should soon be administered in daily practice for non-squamous (NS)-NSCLC. In this context, it will be mandatory to systematically assess the KRAS status in routine clinical practice, at least in advanced NS-NSCLC, leading to new challenges for thoracic oncologists. Abstract KRAS mutations are among the most frequent genomic alterations identified in non-squamous non-small cell lung carcinomas (NS-NSCLC), notably in lung adenocarcinomas. In most cases, these mutations are mutually exclusive, with different genomic alterations currently known to be sensitive to therapies targeting EGFR, ALK, BRAF, ROS1, and NTRK. Recently, several promising clinical trials targeting KRAS mutations, particularly for KRAS G12C-mutated NSCLC, have established new hope for better treatment of patients. In parallel, other studies have shown that NSCLC harboring co-mutations in KRAS and STK11 or KEAP1 have demonstrated primary resistance to immune checkpoint inhibitors. Thus, the assessment of the KRAS status in advanced-stage NS-NSCLC has become essential to setting up an optimal therapeutic strategy in these patients. This stimulated the development of new algorithms for the management of NSCLC samples in pathology laboratories and conditioned reorganization of optimal health care of lung cancer patients by the thoracic pathologists. This review addresses the recent data concerning the detection of KRAS mutations in NSCLC and focuses on the new challenges facing pathologists in daily practice for KRAS status assessment.
Collapse
|
12
|
Seegobin K, Majeed U, Wiest N, Manochakian R, Lou Y, Zhao Y. Immunotherapy in Non-Small Cell Lung Cancer With Actionable Mutations Other Than EGFR. Front Oncol 2021; 11:750657. [PMID: 34926258 PMCID: PMC8671626 DOI: 10.3389/fonc.2021.750657] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
While first line targeted therapies are the current standard of care treatment for non-small cell lung cancer (NSCLC) with actionable mutations, the cancer cells inevitably acquire resistance to these agents over time. Immune check-point inhibitors (ICIs) have improved the outcomes of metastatic NSCLC, however, its efficacy in those with targetable drivers is largely unknown. In this manuscript, we reviewed the published data on ICI therapies in NSCLC with ALK, ROS1, BRAF, c-MET, RET, NTRK, KRAS, and HER2 (ERBB2) alterations. We found that the objective response rates (ORRs) associated with ICI treatments in lung cancers harboring the BRAF (0-54%), c-MET (12-49%), and KRAS (18.7-66.7%) alterations were comparable to non-mutant NSCLC, whereas the ORRs in RET fusion NSCLC (less than10% in all studies but one) and ALK fusion NSCLC (0%) were relatively low. The ORRs reported in small numbers of patients and studies of ROS1 fusion, NTRK fusion, and HER 2 mutant NSCLC were 0-17%, 50% and 7-23%, respectively, making the efficacy of ICIs in these groups of patients less clear. In most studies, no significant correlation between treatment outcome and PD-L1 expression or tumor mutation burden (TMB) was identified, and how to select patients with NSCLC harboring actionable mutations who will likely benefit from ICI treatment remains unknown.
Collapse
Affiliation(s)
- Karan Seegobin
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Umair Majeed
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Nathaniel Wiest
- Department of Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Rami Manochakian
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yujie Zhao
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
13
|
Pavlakis N. Immunotherapy in Non-Small-Cell Lung Cancer: Hallelujah!-But Salvation Is Still Awaited by Many. JCO Oncol Pract 2021; 17:e669-e671. [PMID: 34406818 DOI: 10.1200/op.21.00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, NSW, Australia.,Genesis Care, St Leonards, NSW, Australia.,University of Sydney, Sydney, NSW, Australia
| |
Collapse
|