1
|
Jafri Z, Li Y, Zhang J, O’Meara CH, Khachigian LM. Jun, an Oncological Foe or Friend? Int J Mol Sci 2025; 26:555. [PMID: 39859271 PMCID: PMC11766113 DOI: 10.3390/ijms26020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Jun/JUN is a basic leucine zipper (bZIP) protein and a prototypic member of the activator protein-1 (AP-1) family of transcription factors that can act as homo- or heterodimers, interact with DNA elements and co-factors, and regulate gene transcription. Jun is expressed by both immune and inflammatory cells. Jun is traditionally seen as an oncoprotein that regulates processes involved in transformation and oncogenesis in human tumours. This article examines the traditional view that Jun plays a permissive role in cancer development and progression, whilst exploring emerging evidence supporting Jun's potential to prevent immune cell exhaustion and promote anti-tumour efficacy.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H. O’Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA
- Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Levon M. Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Xu T, Tian T, Wang C, Chen X, Zuo X, Zhou H, Bai J, Zhao C, Fu S, Sun C, Wang T, Zhu L, Zhang J, Wang E, Sun M, Shu Y. Efficacy and safety of novel multiple-chain DAP-CAR-T cells targeting mesothelin in ovarian cancer and mesothelioma: a single-arm, open-label and first-in-human study. Genome Med 2024; 16:133. [PMID: 39548510 PMCID: PMC11568615 DOI: 10.1186/s13073-024-01405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Despite remarkable achievements in applying chimeric antigen receptor (CAR)-T cells to treat hematological malignancies, they remain much less effective against solid tumors, facing several challenges affecting their clinical use. We previously showed that multichain DNAX-activating protein (DAP) CAR structures could enhance the safety and efficacy of CAR-T cells when used against solid tumors. In particular, mesothelin (MSLN)-targeted CAR-T cell therapy has therapeutic potential in MSLN-positive solid tumors, including ovarian cancer and mesothelioma. METHODS In vitro cell killing assays and xenograft model were utilized to determine the anti-tumor efficacy of MSLN targeting DAP-CAR-T cells and other CAR-T cells. ELISA and flow cytometry analysis were used to assess the cytokine secretion capacity and proliferation ability. Eight patients with MSLN expression were enrolled to evaluate the safety and efficacy of MSLN-DAP CAR-T cell therapy. Single-cell sequencing was performed to explore the dynamics of immune cells in patients during treatment and to identify the transcriptomic signatures associated with efficacy and toxicity. RESULTS We found that multichain DAP-CAR formed by combining a natural killer cell immunoglobulin-like receptor truncator and DAP12 exhibited better cytotoxicity and tumor-killing capacity than other natural killer cell-activated receptors associated with DAP12, DAP10, or CD3Z. The safety and efficacy of MSLN-DAP CAR-T cell therapy in patients with ovarian cancer and mesothelioma were evaluated in a single-arm, open-label clinical trial (ChiCTR2100046544); two patients achieved partial response, while four patients had a stable disease status. Furthermore, single-cell sequencing analysis indicated that KT032 CAR-T cell infusion could recruit more immune cells and temporarily remodel the TME. CONCLUSIONS Our study highlights the safety and therapeutic efficacy of multiple-chain DAP-CAR-T cell therapy targeting MSLN to treat patients with ovarian cancer and mesothelioma. TRIAL REGISTRATION ChiCTR.org.cn, ChiCTR2100046544 . May 21, 2021.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Tian Tian
- Department of Geriatric Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanyu Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Sujie Fu
- The Second Affiliated Hospitalof , Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Ting Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Ling Zhu
- Department of Oncology, Xishan People's Hospital of Wuxi City, Wuxi, People's Republic of China
| | - Jingzhi Zhang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
3
|
Nie F, Chen Y, Hu Y, Huang P, Shi X, Cai J, Qiu M, Wang E, Lu K, Sun M. TREM1/DAP12 based novel multiple chain CAR-T cells targeting DLL3 show robust anti-tumour efficacy for small cell lung cancer. Immunology 2024; 172:362-374. [PMID: 38469682 DOI: 10.1111/imm.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Small cell lung cancer (SCLC), recognized as the most aggressive subtype of lung cancer, presents an extremely poor prognosis. Currently, patients with small cell lung cancer face a significant dearth of effective alternative treatment options once they experience recurrence and progression after first-line therapy. Despite the promising efficacy of immunotherapy, particularly immune checkpoint inhibitors in non-small cell lung cancer (NSCLC) and various other tumours, its impact on significantly enhancing the prognosis of SCLC patients remains elusive. DLL3 has emerged as a compelling target for targeted therapy in SCLC due to its high expression on the membranes of SCLC and other neuroendocrine carcinoma cells, with minimal to no expression in normal cells. Our previous work led to the development of a novel multiple chain chimeric antigen receptor (CAR) leveraging the TREM1 receptor and DAP12, which efficiently activated T cells and conferred potent cell cytotoxicity. In this study, we have developed a DLL3-TREM1/DAP12 CAR-T (DLL3-DT CAR-T) therapy, demonstrating comparable anti-tumour efficacy against SCLC cells in vitro. In murine xenograft and patient-derived xenograft models, DLL3-DT CAR-T cells exhibited a more robust tumour eradication efficiency than second-generation DLL3-BBZ CAR-T cells. Furthermore, we observed elevated memory phenotypes, induced durable responses, and activation under antigen-presenting cells in DLL3-DT CAR-T cells. Collectively, these findings suggest that DLL3-DT CAR-T cells may offer a novel and potentially effective therapeutic strategy for treating DLL3-expressing SCLC and other solid tumours.
Collapse
Affiliation(s)
- Fengqi Nie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuli Chen
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yanming Hu
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Peng Huang
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing, China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
4
|
Yu T, Nie FQ, Zhang Q, Yu SK, Zhang ML, Wang Q, Wang EX, Lu KH, Sun M. Effects of methionine deficiency on B7H3-DAP12-CAR-T cells in the treatment of lung squamous cell carcinoma. Cell Death Dis 2024; 15:12. [PMID: 38182561 PMCID: PMC10770166 DOI: 10.1038/s41419-023-06376-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is a subtype of lung cancer for which precision therapy is lacking. Chimeric antigen receptor T-cells (CAR-T) have the potential to eliminate cancer cells by targeting specific antigens. However, the tumor microenvironment (TME), characterized by abnormal metabolism could inhibit CAR-T function. Therefore, the aim of this study was to improve CAR-T efficacy in solid TME by investigating the effects of amino acid metabolism. We found that B7H3 was highly expressed in LUSC and developed DAP12-CAR-T targeting B7H3 based on our previous findings. When co-cultured with B7H3-overexpressing LUSC cells, B7H3-DAP12-CAR-T showed significant cell killing effects and released cytokines including IFN-γ and IL-2. However, LUSC cells consumed methionine (Met) in a competitive manner to induce a Met deficiency. CAR-T showed suppressed cell killing capacity, reduced cytokine release and less central memory T phenotype in medium with lower Met, while the exhaustion markers were up-regulated. Furthermore, the gene NKG7, responsible for T cell cytotoxicity, was downregulated in CAR-T cells at low Met concentration due to a decrease in m5C modification. NKG7 overexpression could partially restore the cytotoxicity of CAR-T in low Met. In addition, the anti-tumor efficacy of CAR-T was significantly enhanced when co-cultured with SLC7A5 knockdown LUSC cells at low Met concentration. In conclusion, B7H3 is a prospective target for LUSC, and B7H3-DAP12-CAR-T cells are promising for LUSC treatment. Maintaining Met levels in CAR-T may help overcome TME suppression and improve its clinical application potential.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Feng-Qi Nie
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Shao-Kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Mei-Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - En-Xiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|