1
|
Curvino EJ, Roe EF, Freire Haddad H, Anderson AR, Woodruff ME, Votaw NL, Segura T, Hale LP, Collier JH. Engaging natural antibody responses for the treatment of inflammatory bowel disease via phosphorylcholine-presenting nanofibres. Nat Biomed Eng 2024; 8:628-649. [PMID: 38012308 PMCID: PMC11128482 DOI: 10.1038/s41551-023-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Alexa R Anderson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Abd El-Aleem SA, Saber EA, Aziz NM, El-Sherif H, Abdelraof AM, Djouhri L. Follicular dendritic cells. J Cell Physiol 2021; 237:2019-2033. [PMID: 34918359 DOI: 10.1002/jcp.30662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022]
Abstract
Follicular dendritic cells (FDCs) are unique accessory immune cells that contribute to the regulation of humoral immunity. They are multitasker cells essential for the organization and maintenance of the lymphoid architecture, induction of germinal center reaction, production of B memory cells, and protection from autoimmune disorders. They perform their activities through both antigen-driven and chemical signaling to B cells. FDCs play a crucial role in the physiological regulation of the immune response. Dis-regulation of this immune response results when FDCs retain antigens for years. This provides a constant antigenic stimulation for B cells resulting in the development of immune disorders. Antigen trapped on FDCs is resistant to therapeutic intervention causing chronicity and recurrences. Beyond their physiological immunoregulatory functions, FDCs are involved in the pathogenesis of several immune-related disorders including HIV/AIDS, prion diseases, chronic inflammatory, and autoimmune disorders. FDCs have also been recently implicated in rare neoplasms of lymphoid and hematopoietic tissues. Understanding FDC biology is essential for better control of humoral immunity and opens the gate for therapeutic management of FDC-mediated immune disorders. Thus, the biology of FDCs has become a hot research area in the last couple of decades. In this review, we aim to provide a comprehensive overview of FDCs and their role in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Minia University, Minya, Egypt.,Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Neven M Aziz
- Department of Pharmacy, Deraya University, New Minia City, Egypt.,Department of Physiology, Minia Faculty of Medicine, Minia, Egypt
| | - Hani El-Sherif
- Department of Pharmacy, Deraya University, New Minia City, Egypt
| | - Asmaa M Abdelraof
- Public Health, Community, Environmental and Occupational Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Laiche Djouhri
- Department of Physiology, College of Medicine (QU Health), Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Modular complement assemblies for mitigating inflammatory conditions. Proc Natl Acad Sci U S A 2021; 118:2018627118. [PMID: 33876753 DOI: 10.1073/pnas.2018627118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Complement protein C3dg, a key linkage between innate and adaptive immunity, is capable of stimulating both humoral and cell-mediated immune responses, leading to considerable interest in its use as a molecular adjuvant. However, the potential of C3dg as an adjuvant is limited without ways of controllably assembling multiple copies of it into vaccine platforms. Here, we report a strategy to assemble C3dg into supramolecular nanofibers with excellent compositional control, using β-tail fusion tags. These assemblies were investigated as therapeutic active immunotherapies, which may offer advantages over existing biologics, particularly toward chronic inflammatory diseases. Supramolecular assemblies based on the Q11 peptide system containing β-tail-tagged C3dg, B cell epitopes from TNF, and the universal T cell epitope PADRE raised strong antibody responses against both TNF and C3dg, and prophylactic immunization with these materials significantly improved protection in a lethal TNF-mediated inflammation model. Additionally, in a murine model of psoriasis induced by imiquimod, the C3dg-adjuvanted nanofiber vaccine performed as well as anti-TNF monoclonal antibodies. Nanofibers containing only β-tail-C3dg and lacking the TNF B cell epitope also showed improvements in both models, suggesting that supramolecular C3dg, by itself, played an important therapeutic role. We observed that immunization with β-tail-C3dg caused the expansion of an autoreactive C3dg-specific T cell population, which may act to dampen the immune response, preventing excessive inflammation. These findings indicate that molecular assemblies displaying C3dg warrant further development as active immunotherapies.
Collapse
|
4
|
Shores LS, Kelly SH, Hainline KM, Suwanpradid J, MacLeod AS, Collier JH. Multifactorial Design of a Supramolecular Peptide Anti-IL-17 Vaccine Toward the Treatment of Psoriasis. Front Immunol 2020; 11:1855. [PMID: 32973764 PMCID: PMC7461889 DOI: 10.3389/fimmu.2020.01855] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Current treatments for chronic immune-mediated diseases such as psoriasis, rheumatoid arthritis, or Crohn's disease commonly rely on cytokine neutralization using monoclonal antibodies; however, such approaches have drawbacks. Frequent repeated dosing can lead to the formation of anti-drug antibodies and patient compliance issues, and it is difficult to identify a single antibody that is broadly efficacious across diverse patient populations. As an alternative to monoclonal antibody therapy, anti-cytokine immunization is a potential means for long-term therapeutic control of chronic inflammatory diseases. Here we report a supramolecular peptide-based approach for raising antibodies against IL-17 and demonstrate its efficacy in a murine model of psoriasis. B-cell epitopes from IL-17 were co-assembled with the universal T-cell epitope PADRE using the Q11 self-assembling peptide nanofiber system. These materials, with or without adjuvants, raised antibody responses against IL-17. Exploiting the modularity of the system, multifactorial experimental designs were used to select formulations maximizing titer and avidity. In a mouse model of psoriasis induced by imiquimod, unadjuvanted nanofibers had therapeutic efficacy, which could be enhanced with alum adjuvant but reversed with CpG adjuvant. Measurements of antibody subclass induced by adjuvanted and unadjuvanted formulations revealed strong correlations between therapeutic efficacy and titers of IgG1 (improved efficacy) or IgG2b (worsened efficacy). These findings have important implications for the development of anti-cytokine active immunotherapies and suggest that immune phenotype is an important metric for eliciting therapeutic anti-cytokine antibody responses.
Collapse
Affiliation(s)
- Lucas S Shores
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Sean H Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kelly M Hainline
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jutamas Suwanpradid
- Department of Dermatology, Duke University School of Medicine, Durham, NC, United States
| | - Amanda S MacLeod
- Department of Dermatology, Duke University School of Medicine, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.,Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
5
|
Xie H, Shu C, Bai H, Sun P, Liu H, Qi J, Li S, Ye C, Gao F, Yuan M, Chen Y, Pan M, Yang X, Ma Y. A therapeutic HPV16 E7 vaccine in combination with active anti-FGF-2 immunization synergistically elicits robust antitumor immunity in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102254. [PMID: 32615335 DOI: 10.1016/j.nano.2020.102254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/28/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
FGF-2 accumulates in many tumor tissues and is closely related to the development of tumor angiogenesis and the immunosuppressive microenvironment. This study aimed to investigate whether active immunization against FGF-2 could modify antitumor immunity and enhance the efficacy of an HPV16 E7-specific therapeutic vaccine. Combined immunization targeting both FGF-2 and E7 significantly suppressed tumor growth, which was accompanied by significantly increased levels of IFN-γ-expressing splenocytes and effector CD8 T cells and decreased levels of immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells(MDSCs) in both the spleen and tumor; in addition, the levels of FGF-2 and neovascularization in tumors were decreased in the mice receiving the combined immunization, and tumor cell apoptosis was promoted. The combination of an HPV16 E7-specific vaccine and active immunization against FGF-2 significantly enhances antitumor immune responses in mice with TC-1 tumors, indicating a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Hanghang Xie
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Congyan Shu
- Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Pengyan Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Center for Disease Control and Prevention; Kunming, China
| | - Hongxian Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Sijin Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Chao Ye
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Fulan Gao
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Mingcui Yuan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Yongjun Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Manchang Pan
- Department of Burn, The Second Affiliated Hospital, Kunming Medical University,Kunming, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China; Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease.
| |
Collapse
|
6
|
Kelly SH, Shores LS, Votaw NL, Collier JH. Biomaterial strategies for generating therapeutic immune responses. Adv Drug Deliv Rev 2017; 114:3-18. [PMID: 28455189 PMCID: PMC5606982 DOI: 10.1016/j.addr.2017.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023]
Abstract
Biomaterials employed to raise therapeutic immune responses have become a complex and active field. Historically, vaccines have been developed primarily to fight infectious diseases, but recent years have seen the development of immunologically active biomaterials towards an expanding list of non-infectious diseases and conditions including inflammation, autoimmunity, wounds, cancer, and others. This review structures its discussion of these approaches around a progression from single-target strategies to those that engage increasingly complex and multifactorial immune responses. First, the targeting of specific individual cytokines is discussed, both in terms of delivering the cytokines or blocking agents, and in terms of active immunotherapies that raise neutralizing immune responses against such single cytokine targets. Next, non-biological complex drugs such as randomized polyamino acid copolymers are discussed in terms of their ability to raise multiple different therapeutic immune responses, particularly in the context of autoimmunity. Last, biologically derived matrices and materials are discussed in terms of their ability to raise complex immune responses in the context of tissue repair. Collectively, these examples reflect the tremendous diversity of existing approaches and the breadth of opportunities that remain for generating therapeutic immune responses using biomaterials.
Collapse
Affiliation(s)
- Sean H Kelly
- Duke University, Department of Biomedical Engineering, United States
| | - Lucas S Shores
- Duke University, Department of Biomedical Engineering, United States
| | - Nicole L Votaw
- Duke University, Department of Biomedical Engineering, United States
| | - Joel H Collier
- Duke University, Department of Biomedical Engineering, United States.
| |
Collapse
|
7
|
Zhong C, Zhang L, Chen L, Deng L, Li R. Coagulation factor XI vaccination: an alternative strategy to prevent thrombosis. J Thromb Haemost 2017; 15:122-130. [PMID: 27813324 DOI: 10.1111/jth.13561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
Essentials Coagulation Factor (F) XI is a safe target for the development of antithrombotics. We designed an antigen comprising the human FXI catalytic domain and diphtheria toxin T domain. Antigen immunization reduced plasma FXI activity by 54% and prevented thrombosis in mice. FXI vaccination can serve as an effective strategy for thrombosis prevention. SUMMARY Background Coagulation factor XI serves as a signal amplifier in the intrinsic coagulation pathway. Blockade of FXI by mAbs or small-molecule inhibitors inhibits thrombosis without causing severe bleeding, which is an inherent risk of currently available antithrombotic agents. Objectives To design an FXI vaccine and assess its efficacy in inhibiting FXI activity and preventing thrombosis. Methods An FXI antigen was generated by fusing the catalytic domain of human FXI to the C-terminus of the transmembrane domain of diphtheria toxin. The anti-FXI antibody response, plasma FXI activity and antithrombotic efficacy in mice immunized with the FXI antigen were examined. Results The antigen elicited a significant antibody response against mouse FXI, and reduced the plasma FXI activity by 54.0% in mice. FXI vaccination markedly reduced the levels of coagulation and inflammation in a mouse model of inferior vena cava stenosis. Significant protective effects were also observed in mouse models of venous thrombosis and pulmonary embolism. Conclusions Our data demonstrate that FXI vaccination can serve as an effective strategy for thrombosis prevention.
Collapse
Affiliation(s)
- C Zhong
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Chen
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - L Deng
- Shanghai HyCharm Inc., Shanghai, China
| | - R Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai, China
| |
Collapse
|
8
|
Rodríguez-Álvarez Y, Morera-Díaz Y, Gerónimo-Pérez H, Castro-Velazco J, Martínez-Castillo R, Puente-Pérez P, Besada-Pérez V, Hardy-Rando E, Chico-Capote A, Martínez-Cordovez K, Santos-Savio A. Active immunization with human interleukin-15 induces neutralizing antibodies in non-human primates. BMC Immunol 2016; 17:30. [PMID: 27671547 PMCID: PMC5036325 DOI: 10.1186/s12865-016-0168-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Interleukin-15 is an immunostimulatory cytokine overexpressed in several autoimmune and inflammatory diseases such as Rheumatoid Arthritis, psoriasis and ulcerative colitis; thus, inhibition of IL-15-induced signaling could be clinically beneficial in these disorders. Our approach to neutralize IL-15 consisted in active immunization with structurally modified human IL-15 (mhIL-15) with the aim to induce neutralizing antibodies against native IL-15. In the present study, we characterized the antibody response in Macaca fascicularis, non-human primates that were immunized with a vaccine candidate containing mhIL-15 in Aluminum hydroxide (Alum), Montanide and Incomplete Freund’s Adjuvant. Results Immunization with mhIL-15 elicited a specific antibodies response that neutralized native IL-15-dependent biologic activity in a CTLL-2 cell proliferation assay. The highest neutralizing response was obtained in macaques immunized with mhIL-15 adjuvanted in Alum. This response, which was shown to be transient, also inhibited the activity of simian IL-15 and did not affect the human IL-2-induced proliferation of CTLL-2 cells. Also, in a pool of synovial fluid cells from two Rheumatoid Arthritis patients, the immune sera slightly inhibited TNF-α secretion. Finally, it was observed that this vaccine candidate neither affect animal behavior, clinical status, blood biochemistry nor the percentage of IL-15-dependent cell populations, specifically CD56+ NK and CD8+ T cells. Conclusion Our results indicate that vaccination with mhIL-15 induced neutralizing antibodies to native IL-15 in non-human primates. Based on this fact, we propose that this vaccine candidate could be potentially beneficial for treatment of diseases where IL-15 overexpression is associated with their pathogenesis.
Collapse
Affiliation(s)
- Yunier Rodríguez-Álvarez
- Pharmaceutical Division, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10 600, Cuba.
| | - Yanelys Morera-Díaz
- Pharmaceutical Division, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10 600, Cuba
| | - Haydee Gerónimo-Pérez
- Quality Control Division, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Jorge Castro-Velazco
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Rafael Martínez-Castillo
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Pedro Puente-Pérez
- Animal Facility Department, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Vladimir Besada-Pérez
- Chemistry and Physics Division, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10600, Cuba
| | - Eugenio Hardy-Rando
- Biotechnology Laboratory, Study Center for Research and Biological Evaluations, Institute of Pharmacy and Foods, Havana University, Avenue 222, PO Box 13600, Havana, 10600, Cuba
| | - Araceli Chico-Capote
- Rheumatology Department, Hermanos Ameijeiras Hospital, San Lazaro 701, PO Box 6122, Havana, 10600, Cuba
| | - Klaudia Martínez-Cordovez
- Pharmaceutical Division, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10 600, Cuba
| | - Alicia Santos-Savio
- Pharmaceutical Division, Center for Genetic Engineering and Biotechnology, Avenue 31, PO Box 6162, Havana, 10 600, Cuba
| |
Collapse
|
9
|
Long Q, Huang W, Yao Y, Yang X, Sun W, Jin X, Li Y, Chu X, Liu C, Peng Z, Ma Y. Virus-like particles presenting interleukin-33 molecules: immunization characteristics and potentials of blockingIL-33/ST2 pathway in allergic airway inflammation. Hum Vaccin Immunother 2015; 10:2303-11. [PMID: 25424936 DOI: 10.4161/hv.29425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We sought to develop an IL-33 vaccine and evaluate its efficacy in a mouse model of asthma. The full-length molecules of putative mature IL-33 were inserted into the immunodominant epitope region of hepatitis B core antigen using gene recombination techniques. The expressed chimeric protein presented as virus-like particles (VLPs) under observation using an electron microscopy. To investigate immunization characteristics of the VLPs, mice were immunized by using different doses, adjuvants, and routes. The VLPs induced sustained and high titers of IL-33-specific IgG and IgA even without the use of a conventional adjuvant, and the lowered ratio of IgG1/IgG2a in vaccinated mice indicated a shift from Th2 to Th1-like responses. To assess the vaccine effects on blocking the signaling of IL-33/ST2 pathway, mice receiving 3 vaccinations subjected to intraperitoneal sensitization and intranasal challenge with ovalbumin (OVA). Control animals received carrier or PBS in place of the vaccine. Immunization with the VLPs significantly suppressed inflammatory cell number and IL-33 level in BALF. OVA -induced goblet cell hyperplasia and lung tissue inflammatory cell infiltration were significantly suppressed in vaccinated mice. Our data indicate that IL-33 molecule-based vaccine, which may block IL-33/ST2 signaling pathway on a persistent basis, holds potential for treatment of asthma and, by extension, other diseases where overexpressed IL-33 plays a pivotal role in pathogenesis.
Collapse
Affiliation(s)
- Qiong Long
- a Lab of Molecular Immunology; Institute of Medical Biology; Chinese Academy of Medical Sciences & Peking Union Medical College; Kunming, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dallenbach K, Maurer P, Röhn T, Zabel F, Kopf M, Bachmann MF. Protective effect of a germline, IL-17-neutralizing antibody in murine models of autoimmune inflammatory disease. Eur J Immunol 2015; 45:1238-47. [PMID: 25545966 DOI: 10.1002/eji.201445017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/19/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.
Collapse
|
11
|
Foged C, Rades T, Perrie Y, Hook S, Ward V, Young S. Virus-Like Particles, a Versatile Subunit Vaccine Platform. SUBUNIT VACCINE DELIVERY 2014. [PMCID: PMC7121566 DOI: 10.1007/978-1-4939-1417-3_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously formed after expression of self-polymerising viral capsid proteins. VLPs structurally resemble their native source virus, maintaining immunological relevance by retaining formation of immunogenic motifs with natural conformation. The absence of the virus genome renders VLPs safe for administration as a subunit vaccine. VLPs can target both arms of the immune response, with some VLPs initiating production of specific antibodies and others activating cytotoxic T cells. VLPs are also exceptionally versatile, conferring protection against the host virus or acting as a scaffold for antigenic molecules. In addition, VLP can support intraparticulate encapsulation for immunomodulation and gene delivery. VLP vaccines have been developed for prophylactic protection against infectious organisms, and therapeutic treatment of conditions such as Alzheimer’s disease, hypertension, and cancer. With an expanding list of vaccine candidates, VLP vaccines are a promising field with a wide range of applications.
Collapse
Affiliation(s)
- Camilla Foged
- Department of Pharmacy, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Yvonne Perrie
- Pharmacy School, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Sarah Hook
- Division of Health Sciences, University of Otago, School of Pharmacy, Dunedin, New Zealand
| | | | | |
Collapse
|
12
|
El Shikh ME, Kmieciak M, Manjili MH, Szakal AK, Pitzalis C, Tew JG. Multi-therapeutic potential of autoantibodies induced by immune complexes trapped on follicular dendritic cells. Hum Vaccin Immunother 2013; 9:2434-44. [PMID: 23836278 PMCID: PMC3981854 DOI: 10.4161/hv.25596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/17/2013] [Accepted: 06/29/2013] [Indexed: 11/19/2022] Open
Abstract
Induction of autoantibodies (autoAbs) targeting disease drivers / mediators is emerging as a potential immunotherapeutic strategy. Auto-immune complex (IC)-retaining follicular dendritic cells (FDCs) critically regulate pathogenic autoAb production in autoreactive germinal centers (GCs); however, their ability to induce potentially therapeutic autoAbs has not been explored. We hypothesized that deliberate display of clinically targeted antigens (Ags) in the form of ICs on FDC membranes induces target-specific autoreactive GCs and autoAbs that may be exploited therapeutically. To test our hypothesis, three therapeutically relevant Ags: TNF-α, HER2/neu and IgE, were investigated. Our results indicated that TNF-α-, HER2/neu- and IgE-specific autoAbs associated with strong GC reactions were induced by TNF-α-, HER2/neu- and IgE-IC retention on FDCs. Moreover, the induced anti-TNF-α autoAbs neutralized mouse and human TNF-α with half maximal Inhibitory Concentration (IC₅₀) of 7.1 and 1.6 nM respectively. In addition, we demonstrated that FDC-induced Ab production could be non-specifically inhibited by the IgG-specific Endo-S that accessed the light zones of GCs and interfered with FDC-IC retention. In conclusion, the ability of FDCs to productively present autoAgs raises the potential for a novel immunotherapeutic platform targeting mediators of autoimmune disorders, allergic diseases, and Ab responsive cancers.
Collapse
Affiliation(s)
- Mohey Eldin El Shikh
- Centre for Experimental Medicine and Rheumatology; William Harvey Research Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London, UK
| | - Maciej Kmieciak
- Department of Microbiology and Immunology; VCU School of Medicine; Richmond, VA USA
- Massey Cancer Centre; VCU School of Medicine; Richmond, VA USA
| | - Masoud H Manjili
- Department of Microbiology and Immunology; VCU School of Medicine; Richmond, VA USA
- Massey Cancer Centre; VCU School of Medicine; Richmond, VA USA
| | - Andras K Szakal
- Anatomy and Neurobiology; VCU School of Medicine; Richmond, VA USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology; William Harvey Research Institute; Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London, UK
| | - John G Tew
- Department of Microbiology and Immunology; VCU School of Medicine; Richmond, VA USA
| |
Collapse
|
13
|
Jia T, Pan Y, Li J, Wang L. Strategies for active TNF-α vaccination in rheumatoid arthritis treatment. Vaccine 2013; 31:4063-8. [PMID: 23845805 DOI: 10.1016/j.vaccine.2013.06.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022]
Abstract
Local overexpression of tumor necrosis factors alpha (TNF-α) is critically involved in the inflammatory response and tissue destruction of rheumatoid arthritis (RA). Currently, the blockade of TNF-α by passive immunotherapy is indeed efficacious in the treatment of RA, but it still present some disadvantages. Induction of high level of anti-TNF-α neutralizing autoantibodies by TNF-α autovaccine has been developed to avoid these shortcomings. This review is to briefly introduce several vaccination approaches that have been used to induce a B cell response, including coupled TNF-α (entire/peptide) with a carrier protein, modified TNF-α with foreign Th cell epitopes, and engineered DNA vaccine. These methods showed remarkable therapeutic efficiency in experimental animals which indicated that active TNF-α immunization would be a promising and cost-effective new treatment option for RA.
Collapse
Affiliation(s)
- Tingting Jia
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Abramovits W, Oquendo M. Introduction to Autoinflammatory Syndromes and Diseases. Dermatol Clin 2013; 31:363-85. [DOI: 10.1016/j.det.2013.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
El Shikh MEM, Pitzalis C. Follicular dendritic cells in health and disease. Front Immunol 2012; 3:292. [PMID: 23049531 PMCID: PMC3448061 DOI: 10.3389/fimmu.2012.00292] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/31/2012] [Indexed: 12/17/2022] Open
Abstract
Follicular dendritic cells (FDCs) are unique immune cells that contribute to the regulation of humoral immune responses. These cells are located in the B-cell follicles of secondary lymphoid tissues where they trap and retain antigens (Ags) in the form of highly immunogenic immune complexes (ICs) consisting of Ag plus specific antibody (Ab) and/or complement proteins. FDCs multimerize Ags and present them polyvalently to B-cells in periodically arranged arrays that extensively crosslink the B-cell receptors for Ag (BCRs). FDC-FcγRIIB mediates IC periodicity, and FDC-Ag presentation combined with other soluble and membrane bound signals contributed by FDCs, like FDC-BAFF, -IL-6, and -C4bBP, are essential for the induction of the germinal center (GC) reaction, the maintenance of serological memory, and the remarkable ability of FDC-Ags to induce specific Ab responses in the absence of cognate T-cell help. On the other hand, FDCs play a negative role in several disease conditions including chronic inflammatory diseases, autoimmune diseases, HIV/AIDS, prion diseases, and follicular lymphomas. Compared to other accessory immune cells, FDCs have received little attention, and their functions have not been fully elucidated. This review gives an overview of FDC structure, and recapitulates our current knowledge on the immunoregulatory functions of FDCs in health and disease. A better understanding of FDCs should permit better regulation of Ab responses to suit the therapeutic manipulation of regulated and dysregulated immune responses.
Collapse
Affiliation(s)
- Mohey Eldin M El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | | |
Collapse
|
16
|
Semerano L, Assier E, Boissier MC. Anti-cytokine vaccination: A new biotherapy of autoimmunity? Autoimmun Rev 2012; 11:785-6. [DOI: 10.1016/j.autrev.2012.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|