1
|
Sharma A, Jasrotia S, Kumar A. Effects of Chemotherapy on the Immune System: Implications for Cancer Treatment and Patient Outcomes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2551-2566. [PMID: 37906273 DOI: 10.1007/s00210-023-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Chemotherapy is a cornerstone of cancer treatment, but it can also induce immune suppression, which can have significant implications for patient outcomes. This review paper aims to give a general overview of how chemotherapy affects the immune system and how it affects cancer treatment. Chemotherapy can directly affect immune cells, leading to cytotoxic effects, cell differentiation and function alterations, and cell communication and signaling pathways disruptions. Such immune suppression can weaken the anti-tumor immune response and increase the risk of immune-related toxicities. Understanding the mechanisms of chemotherapy-induced immune suppression is crucial for optimizing treatment strategies. Strategies to mitigate immune suppression include immunomodulatory agents as adjuvants to chemotherapy, combination therapies to enhance immune function, and supportive care measures of the immune system. Additionally, identifying potential biomarkers to predict immune suppression and guide treatment decisions holds promise for personalized cancer medicine. Future directions in this field involve further elucidating underlying mechanisms, exploring novel combination therapies, and developing targeted interventions to minimize immune suppression. By understanding and addressing chemotherapy-induced immune suppression, we can optimize cancer treatment strategies, enhance the anti-tumor immune response, and improve patient outcomes.
Collapse
Affiliation(s)
- Anirudh Sharma
- Department of Biosciences (UIBT), Chandigarh University, Mohali, Punjab, 140413, India
| | - Shivam Jasrotia
- Department of Biosciences (UIBT), Chandigarh University, Mohali, Punjab, 140413, India.
| | - Ajay Kumar
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
2
|
Pastor Y, Ghazzaui N, Hammoudi A, Centlivre M, Cardinaud S, Levy Y. Refining the DC-targeting vaccination for preventing emerging infectious diseases. Front Immunol 2022; 13:949779. [PMID: 36016929 PMCID: PMC9396646 DOI: 10.3389/fimmu.2022.949779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
The development of safe, long-term, effective vaccines is still a challenge for many infectious diseases. Thus, the search of new vaccine strategies and production platforms that allow rapidly and effectively responding against emerging or reemerging pathogens has become a priority in the last years. Targeting the antigens directly to dendritic cells (DCs) has emerged as a new approach to enhance the immune response after vaccination. This strategy is based on the fusion of the antigens of choice to monoclonal antibodies directed against specific DC surface receptors such as CD40. Since time is essential, in silico approaches are of high interest to select the most immunogenic and conserved epitopes to improve the T- and B-cells responses. The purpose of this review is to present the advances in DC vaccination, with special focus on DC targeting vaccines and epitope mapping strategies and provide a new framework for improving vaccine responses against infectious diseases.
Collapse
Affiliation(s)
- Yadira Pastor
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Nour Ghazzaui
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Adele Hammoudi
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, Inserm U955, Team 16, Créteil, France
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France
- *Correspondence: Yves Levy,
| |
Collapse
|
3
|
Lage DP, Vale DL, Linhares FP, Freitas CS, Machado AS, Cardoso JMO, de Oliveira D, Galvani NC, de Oliveira MP, Oliveira-da-Silva JA, Ramos FF, Tavares GSV, Ludolf F, Bandeira RS, Pereira IAG, Chávez-Fumagalli MA, Roatt BM, Machado-de-Ávila RA, Christodoulides M, Coelho EAF, Martins VT. A Recombinant Chimeric Protein-Based Vaccine Containing T-Cell Epitopes from Amastigote Proteins and Combined with Distinct Adjuvants, Induces Immunogenicity and Protection against Leishmania infantum Infection. Vaccines (Basel) 2022; 10:vaccines10071146. [PMID: 35891310 PMCID: PMC9317424 DOI: 10.3390/vaccines10071146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Currently, there is no licensed vaccine to protect against human visceral leishmaniasis (VL), a potentially fatal disease caused by infection with Leishmania parasites. In the current study, a recombinant chimeric protein ChimT was developed based on T-cell epitopes identified from the immunogenic Leishmania amastigote proteins LiHyp1, LiHyV, LiHyC and LiHyG. ChimT was associated with the adjuvants saponin (Sap) or monophosphoryl lipid A (MPLA) and used to immunize mice, and their immunogenicity and protective efficacy were evaluated. Both ChimT/Sap and ChimT/MPLA induced the development of a specific Th1-type immune response, with significantly high levels of IFN-γ, IL-2, IL-12, TNF-α and GM-CSF cytokines produced by CD4+ and CD8+ T cell subtypes (p < 0.05), with correspondingly low production of anti-leishmanial IL-4 and IL-10 cytokines. Significantly increased (p < 0.05) levels of nitrite, a proxy for nitric oxide, and IFN-γ expression (p < 0.05) were detected in stimulated spleen cell cultures from immunized and infected mice, as was significant production of parasite-specific IgG2a isotype antibodies. Significant reductions in the parasite load in the internal organs of the immunized and infected mice (p < 0.05) were quantified with a limiting dilution technique and quantitative PCR and correlated with the immunological findings. ChimT/MPLA showed marginally superior immunogenicity than ChimT/Sap, and although this was not statistically significant (p > 0.05), ChimT/MPLA was preferred since ChimT/Sap induced transient edema in the inoculation site. ChimT also induced high IFN-γ and low IL-10 levels from human PBMCs isolated from healthy individuals and from VL-treated patients. In conclusion, the experimental T-cell multi-epitope amastigote stage Leishmania vaccine administered with adjuvants appears to be a promising vaccine candidate to protect against VL.
Collapse
Affiliation(s)
- Daniela P. Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Danniele L. Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Flávia P. Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Camila S. Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Amanda S. Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Jamille M. O. Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto CEP 35400-000, MG, Brazil; (J.M.O.C.); (B.M.R.)
| | - Daysiane de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil; (D.d.O.); (R.A.M.-d.-Á.)
| | - Nathália C. Galvani
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Marcelo P. de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - João A. Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Fernanda F. Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Grasiele S. V. Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Raquel S. Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Isabela A. G. Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| | - Miguel A. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa 04000, Peru;
| | - Bruno M. Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto CEP 35400-000, MG, Brazil; (J.M.O.C.); (B.M.R.)
| | - Ricardo A. Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil; (D.d.O.); (R.A.M.-d.-Á.)
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Faculty of Medicine, School of Clinical and Experimental Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
- Correspondence: ; Tel.: +44-02381-205120
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
- Departamento de Patologia Clínica, Colégio Técnico (COLTEC), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Vívian T. Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Belo Horizonte 30130-100, MG, Brazil; (D.P.L.); (D.L.V.); (F.P.L.); (C.S.F.); (A.S.M.); (N.C.G.); (M.P.d.O.); (J.A.O.-d.-S.); (F.F.R.); (G.S.V.T.); (F.L.); (R.S.B.); (I.A.G.P.); (E.A.F.C.); (V.T.M.)
| |
Collapse
|
5
|
Shermeh AS, Zahedifard F, Habibzadeh S, Taheri T, Rafati S, Seyed N. Evaluation of protection induced by in vitro maturated BMDCs presenting CD8 + T cell stimulating peptides after a heterologous vaccination regimen in BALB/c model against Leishmania major. Exp Parasitol 2021; 223:108082. [PMID: 33581108 DOI: 10.1016/j.exppara.2021.108082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Leishmaniasis is a complex vector-borne disease mediated by Leishmania parasite and a strong and long-lasting CD4+ Th1 and CD8+-T cell immunity is required to control the infection. Thus far multivalent subunit vaccines have met this requirement more promisingly. However several full protein sequences cannot be easily arranged in one construct. Instead, new emerging immune-informatics based epitope formulations surpass this restriction. Herein, we aimed to examine the protective potential of a dendritic cell based vaccine presenting epitopes to CD8+ and CD4+-T cells in combination with DNA vaccine encoding the same epitopes against murine cutaneous leishmaniasis. Immature DCs were loaded with epitopes (selected from parasite proteome) in vitro with or without CpG oligonucleotides and were used to immunize BALB/c mice. Peptide coding DNA was used to boost the system and immunological responses were evaluated after Leishmania (L.) major infectious challenge. The pre-challenge response to included epitopes was Th1 polarized which potentially lowered the infection at early time points post-challenge but not at later weeks. Collectively, DC prime-DNA boost was found to be a promising approach for Th1 polarization however the constituent epitopes undoubtedly make a significant contribution in the protection outcome of the vaccine.
Collapse
Affiliation(s)
- Atefeh Sadeghi Shermeh
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farnaz Zahedifard
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Immunotherapy and Leishmania Vaccine Research Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Namdar Ahmadabad H, Shafiei R, Hatam GR, Zolfaghari Emameh R, Aspatwar A. Cytokine profile and nitric oxide levels in peritoneal macrophages of BALB/c mice exposed to the fucose-mannose ligand of Leishmania infantum combined with glycyrrhizin. Parasit Vectors 2020; 13:363. [PMID: 32690108 PMCID: PMC7370265 DOI: 10.1186/s13071-020-04243-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background The fucose-mannose ligand (FML) of Leishmania infantum is a complex glycoprotein which does not elicit adequate immunogenicity in humans. In recent years, adjuvant compounds derived from plants have been used for improving the immunogenicity of vaccines. Glycyrrhizin (GL) is a natural triterpenoid saponin that has known immunomodulatory activities. In the present study, we investigated the effects of co-treatment with FML and GL on the production of cytokines and nitric oxide (NO) by macrophages, in vitro. Methods Lipopolysaccharide (LPS) stimulated murine peritoneal macrophages were treated with FML (5 μg/ml) of L. infantum and various concentrations of GL (1 μg/ml, 10 μg/ml and 20 μg/ml). After 48 h of treatment, cell culture supernatants were recovered and the levels of TNF-α, IL-10, IL-12p70 and IP-10 were measured by sandwich ELISA and NO concentration by Griess reaction. Results Our results indicate that the treatment of activated macrophages with FML plus GL leads to enhanced production of NO, TNF-α and IL-12p70, and reduction of IL-10 levels in comparison with FML treatment alone. Conclusions Therefore, we concluded that GL can improve the immunostimulatory effect of FML on macrophages and leads to their polarization towards an M1-like phenotype. ![]()
Collapse
Affiliation(s)
- Hasan Namdar Ahmadabad
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Gholam Reza Hatam
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| |
Collapse
|
7
|
Seyed N, Peters NC, Rafati S. Translating Observations From Leishmanization Into Non-Living Vaccines: The Potential of Dendritic Cell-Based Vaccination Strategies Against Leishmania. Front Immunol 2018; 9:1227. [PMID: 29922288 PMCID: PMC5996938 DOI: 10.3389/fimmu.2018.01227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a health-threatening vector-borne disease in almost 90 different countries. While a prophylactic human vaccine is not yet available, the fact that recovery from leishmaniasis establishes lifelong immunity against secondary infection suggests that a vaccine is attainable. In the past, deliberate infection with virulent parasites, termed Leishmanization, was used as a live-vaccine against cutaneous leishmaniasis and effectively protected against vector-transmitted disease in endemic areas. However, the practice was discontinued due to major complications including non-healing skin lesions, exacerbation of skin diseases, and the potential impact of immunosuppression. Instead, tremendous effort has been made to develop killed, live attenuated, and non-living subunit formulations. Many of these formulations produce promising experimental results but have failed in field trials or against experimental challenge with infected sand flies. Recently, experimental models of leishmanization have unraveled the critical role of parasite persistence in maintaining the circulating CD4+ effector T cells responsible for mitigating the inflammatory response early after sand fly challenge and mediating protective immunity. Here, we put forward the notion that for effective vaccine design (especially non-living vaccines), the role of antigen persistence and pre-existing effector CD4+ T cells should be taken into consideration. We propose that dendritic cell-based vaccination strategies warrant greater attention because of their potential to act as long-term antigen depots, thereby emulating this critical requirement of naturally acquired protective immunity against infected sand fly challenge.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Nathan C. Peters
- Cumming School of Medicine, Snyder Institute for Chronic Diseases of Canada, University of Calgary, Calgary, Canada
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Bagirova M, Allahverdiyev AM, Abamor ES, Ullah I, Cosar G, Aydogdu M, Senturk H, Ergenoglu B. Overview of dendritic cell-based vaccine development for leishmaniasis. Parasite Immunol 2017; 38:651-662. [PMID: 27591404 DOI: 10.1111/pim.12360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/20/2016] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is one of the most serious vector-borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- M Bagirova
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - A M Allahverdiyev
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey.
| | - E S Abamor
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - I Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - G Cosar
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - M Aydogdu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - H Senturk
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - B Ergenoglu
- Bioengineering Department, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|