1
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
2
|
Walsh SR, Gay CL, Karuna ST, Hyrien O, Skalland T, Mayer KH, Sobieszczyk ME, Baden LR, Goepfert PA, del Rio C, Pantaleo G, Andrew P, Karg C, He Z, Lu H, Paez CA, Baumblatt JAG, Polakowski LL, Chege W, Anderson MA, Janto S, Han X, Huang Y, Dumond J, Ackerman ME, McDermott AB, Flach B, Piwowar-Manning E, Seaton K, Tomaras GD, Montefiori DC, Gama L, Mascola JR. Safety and pharmacokinetics of VRC07-523LS administered via different routes and doses (HVTN 127/HPTN 087): A Phase I randomized clinical trial. PLoS Med 2024; 21:e1004329. [PMID: 38913710 PMCID: PMC11251612 DOI: 10.1371/journal.pmed.1004329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/16/2024] [Accepted: 04/23/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. We conducted a multicenter, randomized, partially blinded Phase I clinical trial to evaluate the safety and serum concentrations of VRC07-523LS, administered in multiple doses and routes to healthy adults without HIV. METHODS AND FINDINGS Participants were recruited between 2 February 2018 and 9 October 2018. A total of 124 participants were randomized to receive 5 VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), subcutaneous (SC) (T4: 2.5 mg/kg, T5: 5 mg/kg), or intramuscular (IM) (T6: 2.5 mg/kg or P6: placebo) routes at 4-month intervals. Participants and site staff were blinded to VRC07-523LS versus placebo for the IM group, while all other doses and routes were open-label. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum PK. Neutralization activity was measured in a TZM-bl assay and antidrug antibodies (ADAs) were assayed using a tiered bridging assay testing strategy. Injections and infusions were well tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusion reactions were reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals [95% CIs]) following the first administration were 29.0 μg/mL (25.2, 33.4), 58.5 μg/mL (49.4, 69.3), and 257.2 μg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 μg/mL (8.8, 13.3) and 22.8 μg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 μg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM (95% CIs) concentrations immediately prior to the second administration were 3.4 μg/mL (2.5, 4.6), 6.5 μg/mL (5.6, 7.5), and 27.2 μg/mL (23.9, 31.0) with IV dosing; 0.97 μg/mL (0.65, 1.4) and 3.1 μg/mL (2.2, 4.3) with SC dosing, and 2.6 μg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titers, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titer ADA at a lone time point. VRC07-523LS has an estimated mean half-life of 42 days across all doses and routes (95% CI: 40.5, 43.5), over twice as long as VRC01 (15 days). CONCLUSIONS VRC07-523LS was safe and well tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens. TRIAL REGISTRATION ClinicalTrials.gov/ NCT03387150 (posted on 21 December 2017).
Collapse
Affiliation(s)
- Stephen R. Walsh
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cynthia L. Gay
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shelly T. Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Ollivier Hyrien
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Timothy Skalland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kenneth H. Mayer
- Harvard Medical School, Boston, Massachusetts, United States of America
- Fenway Institute, Boston, Massachusetts, United States of America
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Columbia University, New York, New York, United States of America
| | - Lindsey R. Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul A. Goepfert
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carlos del Rio
- Emory University School of Medicine and Ponce de Leon Center of the Grady Health System, Atlanta, Georgia, United States of America
| | | | - Philip Andrew
- FHI 360, Durham, North Carolina, United States of America
| | - Carissa Karg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zonglin He
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Huiyin Lu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Carmen A. Paez
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jane A. G. Baumblatt
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Laura L. Polakowski
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Wairimu Chege
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Maija A. Anderson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Sophie Janto
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Xue Han
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Julie Dumond
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Adrian B. McDermott
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Britta Flach
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | | | - Kelly Seaton
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Lucio Gama
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | | |
Collapse
|
3
|
Walsh SR, Gay CL, Karuna ST, Hyrien O, Skalland T, Mayer KH, Sobieszczyk ME, Baden LR, Goepfert PA, Del Rio C, Pantaleo G, Andrew P, Karg C, He Z, Lu H, Paez CA, Baumblatt JAG, Polakowski LL, Chege W, Janto S, Han X, Huang Y, Dumond J, Ackerman ME, McDermott AB, Flach B, Piwowar-Manning E, Seaton K, Tomaras GD, Montefiori DC, Gama L, Mascola JR. A Randomised Clinical Trial of the Safety and Pharmacokinetics of VRC07-523LS Administered via Different Routes and Doses (HVTN 127/HPTN 087). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.23299799. [PMID: 38260276 PMCID: PMC10802646 DOI: 10.1101/2024.01.10.23299799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the only bnAb HIV prevention efficacy studies to date, the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. Greater efficacy is required before passively administered bnAbs become a viable option for HIV prevention; furthermore subcutaneous (SC) or intramuscular (IM) administration may be preferred. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. Methods Participants were recruited between 02 February 2018 and 09 October 2018. 124 healthy participants without HIV were randomized to receive five VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), SC (T4: 2.5 mg/kg, T5: 5 mg/kg) or IM (T6: 2.5 mg/kg or P6: placebo) routes at four-month intervals. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA after the first dose through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum pharmacokinetics. Neutralization activity was measured in a TZM-bl assay and anti-drug antibodies (ADA) were assayed using a tiered bridging assay testing strategy. Results Injections were well-tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusions were generally well-tolerated, with infusion reactions reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals) following the first administration were 29.0 μg/mL (25.2, 33.4), 58.5 μg/mL (49.4, 69.3), and 257.2 μg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 μg/mL (8.8, 13.3) and 22.8 μg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 μg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM concentrations immediately prior to the second administration were 3.4 μg/mL (2.5, 4.6), 6.5 μg/mL (5.6, 7.5), and 27.2 μg/mL (23.9, 31.0) with IV dosing; 0.97 μg/mL (0.65, 1.4) and 3.1 μg/mL (2.2, 4.3) with SC dosing, and 2.6 μg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titres, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titre ADA at a lone timepoint. VRC07-523LS has an estimated mean half-life of 42 days (95% CI: 40.5, 43.5), approximately twice as long as VRC01. Conclusions VRC07-523LS was safe and well-tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens.
Collapse
|
6
|
Khodadust F, Ahmadpour S, Aligholikhamseh N, Abedi SM, Hosseinimehr SJ. An improved 99mTc-HYNIC-(Ser) 3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor. Eur J Med Chem 2017; 144:767-773. [PMID: 29291444 DOI: 10.1016/j.ejmech.2017.12.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023]
Abstract
Overexpression of human epidermal receptor 2 (HER2) has given the opportunity for targeting and delivering of imaging radiotracers. The aim of this study was to evaluate the 99mTc-HYNIC-(EDDA/tricine)-(Ser)3-LTVSPWY peptide for tumor targeting and imaging of tumor with overexpression of HER2. The HYNIC-(Ser)3-LTVSPWY was labeled with 99mTc in presence of EDDA/tricine mixture as co-ligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular specific binding and tumor targeting. The high radiochemical purity of 99mTc-HYNIC (EDDA/tricine)-(Ser)3-LTVSPWY was obtained to be 99%. It exhibited high stability in normal saline and human serum. In HER2 binding affinity study, a significant reduction in uptake of radiolabeled peptide (7.7 fold) was observed by blocking SKOV-3 cells receptors with unlabeled peptide. The KD and Bmax values for this radiolabeled peptide were determined as 3.3 ± 1.0 nM and 2.9 ± 0.3 × 106 CPM/pMol, respectively. Biodistribution study revealed tumor to blood and tumor to muscle ratios about 6.9 and 4 respectively after 4 h. Tumor imaging by gamma camera demonstrated considerable high contrast tumor uptake. This developed 99mTc-HYNIC-(Ser)3-LTVSPWY peptide selectively targeted on HER2 tumor and exhibited a high target uptake combined with acceptable low background activity for tumor imaging in mice. The results of this study and its comparison with another study showed that 99mTc-HYNIC-(EDDA/tricine)-(Ser)3-LTVSPWY is much better than previously reported radiolabeled peptide as 99mTc-CSSS-LTVSPWY for HER2 overexpression tumor targeting and imaging.
Collapse
Affiliation(s)
- Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Ahmadpour
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nazan Aligholikhamseh
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Berteau C, Filipe-Santos O, Wang T, Rojas HE, Granger C, Schwarzenbach F. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2015; 8:473-84. [PMID: 26635489 PMCID: PMC4646585 DOI: 10.2147/mder.s91019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC) injection pain tolerance. Methods The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP) combined with two different injection flow rates (0.02 and 0.3 mL/s). All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS) (0 mm/no pain, 100 mm/extreme pain). The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results Viscosity levels had significant impact on perceived injection pain (P=0.0003). Specifically, less pain was associated with high viscosity (VAS =12.6 mm) than medium (VAS =16.6 mm) or low (VAS =22.1 mm) viscosities, with a significant difference between high and low viscosities (P=0.0002). Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89). Slow (0.02 mL/s) or fast (0.30 mL/s) injection rates also showed no significant impact on perceived pain during SC injection (P=0.79). In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High viscosity injections were shown to be the most tolerated, whereas injection volume and flow rates did not impact perceived pain.
Collapse
Affiliation(s)
- Cecile Berteau
- Becton-Dickinson Medical Pharmaceutical Systems, Le Pont de Claix, France
| | | | - Tao Wang
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Corinne Granger
- Becton-Dickinson Medical Pharmaceutical Systems, Le Pont de Claix, France
| | | |
Collapse
|