1
|
Demirbağ B, Büyükafşar K, Kaya H, Yıldırım M, Bucak Ö, Ünver H, Erdoğan S. Investigation of the anticancer effect of newly synthesized palladium conjugate Schiff base metal complexes on non-small cell lung cancer cell line and mouse embryonic fibroblast cell line. Biochem Biophys Res Commun 2024; 735:150658. [PMID: 39260335 DOI: 10.1016/j.bbrc.2024.150658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Lung cancer remains one of the leading causes of death worldwide. Due to the side effects of chemotherapeutic agents on normal cells and the development of resistance by cancer cells, there is an urgent need for alternative new pharmacological agents. Palladium (Pd)-conjugated Schiff base (SB) compounds represent an alternative approach with promising potential applications in cancer treatment. This study aims to identify novel therapeutic agents on A549 cells through the synthesis and characterization of Schiff base conjugated-Palladium complexes (Pd-L1 and Pd-L2). Additionally, it seeks to elucidate the mechanism of action of these compounds on both the A549 and NIH/3T3 cell lines. In the present study, two new Pd-L1 and Pd-L2 were synthesized for the first time and characterized mainly by single crystal X-ray diffraction and 1H, 13C, 31P NMR techniques. The cytotoxic effect of the compounds was evaluated by MTT assay on A549 and NIH/3T3 cell lines for 24 and 48 h. Cisplatin was used as a positive control group. Based on the cytotoxicity results, the complexes were evaluated for their anticancer activities against A549 cell lines for 48 h through reactive oxygen species (ROS), cell cycle, apoptotic, and necrotic cell analyses. The most potent cytotoxic effects were determined for Pd-L1 (IC50: 23.33 μM), Pd-L2 (IC50: 3.19 μM), and cisplatin (IC50: 33.27 μM) on A549 cells (p < 0.05). The compounds exhibited a significant cytotoxic effect at lower concentrations on A549 cells compared to NIH/3T3 cells (p < 0.05). All compounds showed a significant increase in ROS levels in A549 cells compared to the control group (p < 0.05). While necrosis and apoptosis was observed in A549 cells treated with cisplatin, induction of apoptosis was effective in cell death for A549 cells treated with Pd-L1 and Pd-L2 (p < 0.05). Additionally, it was observed that the compounds inhibited cell proliferation in the G0/G1 and G2/M cell cycle phases (p < 0.05). All compounds induced cell cycle arrest and cell death in A549 cells by increasing ROS levels. The results obtained in the present study could advance the utilization of the compounds as anticancer agents.
Collapse
Affiliation(s)
- Burcu Demirbağ
- Mersin University, Faculty of Medicine, Department of Stem Cell and Regenerative Medical, Mersin, Turkey
| | - Kansu Büyükafşar
- Mersin University, Faculty of Medicine, Department of Stem Cell and Regenerative Medical, Mersin, Turkey; Mersin University, Faculty of Medicine, Department of Medical Pharmacology, Mersin, Turkey
| | - Hamide Kaya
- Mersin University, Faculty of Medicine, Department of Medical Microbiology, Mersin, Turkey
| | - Metin Yıldırım
- Harran University, Faculty of Pharmacy, Department of Biochemistry, Şanlıurfa, Turkey.
| | - Öznur Bucak
- Mersin University, Faculty of Medicine, Department of Medical Biology and Genetics, Mersin, Turkey
| | - Hakan Ünver
- Eskisehir Technical University, Faculty of Science, Department of Chemistry, Eskisehir, Turkey
| | - Semra Erdoğan
- Mersin University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin, Turkey
| |
Collapse
|
2
|
Mohanty P, Pande B, Acharya R, Bhaskar LVKS, Verma HK. Unravelling the Triad of Lung Cancer, Drug Resistance, and Metabolic Pathways. Diseases 2024; 12:93. [PMID: 38785748 PMCID: PMC11119248 DOI: 10.3390/diseases12050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer, characterized by its heterogeneity, presents a significant challenge in therapeutic management, primarily due to the development of resistance to conventional drugs. This resistance is often compounded by the tumor's ability to reprogram its metabolic pathways, a survival strategy that enables cancer cells to thrive in adverse conditions. This review article explores the complex link between drug resistance and metabolic reprogramming in lung cancer, offering a detailed analysis of the molecular mechanisms and treatment strategies. It emphasizes the interplay between drug resistance and changes in metabolic pathways, crucial for developing effective lung cancer therapies. This review examines the impact of current treatments on metabolic pathways and the significance of considering metabolic factors to combat drug resistance. It highlights the different challenges and metabolic alterations in non-small-cell lung cancer and small-cell lung cancer, underlining the need for subtype-specific treatments. Key signaling pathways, including PI3K/AKT/mTOR, MAPK, and AMPK, have been discussed for their roles in promoting drug resistance and metabolic changes, alongside the complex regulatory networks involved. This review article evaluates emerging treatments targeting metabolism, such as metabolic inhibitors, dietary management, and combination therapies, assessing their potential and challenges. It concludes with insights into the role of precision medicine and metabolic biomarkers in crafting personalized lung cancer treatments, advocating for metabolic targeting as a promising approach to enhance treatment efficacy and overcome drug resistance. This review underscores ongoing advancements and hurdles in integrating metabolic considerations into lung cancer therapy strategies.
Collapse
Affiliation(s)
- Pratik Mohanty
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur 492099, India;
| | - Rakesh Acharya
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - L V K S Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, India; (R.A.); (L.V.K.S.B.)
| | - Henu Kumar Verma
- Lung Health and Immunity, Helmholtz Zentrum Munich, IngolstädterLandstraße 1, 85764 Oberschleißheim, 85764 Munich, Bayren, Germany
| |
Collapse
|
3
|
Wong SWH, Pastrello C, Kotlyar M, Faloutsos C, Jurisica I. USNAP: fast unique dense region detection and its application to lung cancer. Bioinformatics 2023; 39:btad477. [PMID: 37527019 PMCID: PMC10425186 DOI: 10.1093/bioinformatics/btad477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
MOTIVATION Many real-world problems can be modeled as annotated graphs. Scalable graph algorithms that extract actionable information from such data are in demand since these graphs are large, varying in topology, and have diverse node/edge annotations. When these graphs change over time they create dynamic graphs, and open the possibility to find patterns across different time points. In this article, we introduce a scalable algorithm that finds unique dense regions across time points in dynamic graphs. Such algorithms have applications in many different areas, including the biological, financial, and social domains. RESULTS There are three important contributions to this manuscript. First, we designed a scalable algorithm, USNAP, to effectively identify dense subgraphs that are unique to a time stamp given a dynamic graph. Importantly, USNAP provides a lower bound of the density measure in each step of the greedy algorithm. Second, insights and understanding obtained from validating USNAP on real data show its effectiveness. While USNAP is domain independent, we applied it to four non-small cell lung cancer gene expression datasets. Stages in non-small cell lung cancer were modeled as dynamic graphs, and input to USNAP. Pathway enrichment analyses and comprehensive interpretations from literature show that USNAP identified biologically relevant mechanisms for different stages of cancer progression. Third, USNAP is scalable, and has a time complexity of O(m+mc log nc+nc log nc), where m is the number of edges, and n is the number of vertices in the dynamic graph; mc is the number of edges, and nc is the number of vertices in the collapsed graph. AVAILABILITY AND IMPLEMENTATION The code of USNAP is available at https://www.cs.utoronto.ca/~juris/data/USNAP22.
Collapse
Affiliation(s)
- Serene W H Wong
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder
Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil
Research Institute, University Health Network, 60 Leonard Avenue,
Toronto, ON M5T 0S8, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder
Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil
Research Institute, University Health Network, 60 Leonard Avenue,
Toronto, ON M5T 0S8, Canada
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder
Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil
Research Institute, University Health Network, 60 Leonard Avenue,
Toronto, ON M5T 0S8, Canada
| | - Christos Faloutsos
- Department of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, United States
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder
Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil
Research Institute, University Health Network, 60 Leonard Avenue,
Toronto, ON M5T 0S8, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Room
4283, Toronto, ON, M5S 2E4, Canada
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer
Research Tower, MaRS Centre, 101 College Street, Room 15-701, Toronto, ON, M5G 1L7,
Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, vvi, Dubravská cesta 9, 845
10 Bratislava 45, Slovakia
| |
Collapse
|
4
|
Yu S, Li W, Liu X, Zhang H, Liu X, Zhang LW. TRIM36 enhances lung adenocarcinoma radiosensitivity and inhibits tumorigenesis through promoting RAD51 ubiquitination and antagonizing hsa-miR-376a-5p. Biochem Biophys Res Commun 2022; 628:1-10. [DOI: 10.1016/j.bbrc.2022.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
5
|
Proteomic Analysis of Lung Cancer Types—A Pilot Study. Cancers (Basel) 2022; 14:cancers14112629. [PMID: 35681609 PMCID: PMC9179298 DOI: 10.3390/cancers14112629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of tumor-related mortality, therefore significant effort is directed towards understanding molecular alterations occurring at the origin of the disease to improve current treatment options. The aim of our pilot-scale study was to carry out a detailed proteomic analysis of formalin-fixed paraffin-embedded tissue sections from patients with small cell or non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). Tissue surface digestion was performed on relatively small cancerous and tumor-adjacent normal regions and differentially expressed proteins were identified using label-free quantitative mass spectrometry and subsequent statistical analysis. Principal component analysis clearly distinguished cancerous and cancer adjacent normal samples, while the four lung cancer types investigated had distinct molecular profiles and gene set enrichment analysis revealed specific dysregulated biological processes as well. Furthermore, proteins with altered expression unique to a specific lung cancer type were identified and could be the targets of future studies.
Collapse
|
6
|
Gonzalez Rajal A, Marzec KA, McCloy RA, Nobis M, Chin V, Hastings JF, Lai K, Kennerson M, Hughes WE, Vaghjiani V, Timpson P, Cain JE, Watkins DN, Croucher DR, Burgess A. A non-genetic, cell cycle-dependent mechanism of platinum resistance in lung adenocarcinoma. eLife 2021; 10:65234. [PMID: 33983115 PMCID: PMC8169122 DOI: 10.7554/elife.65234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
We previously used a pulse-based in vitro assay to unveil targetable signalling pathways associated with innate cisplatin resistance in lung adenocarcinoma (Hastings et al., 2020). Here, we advanced this model system and identified a non-genetic mechanism of resistance that drives recovery and regrowth in a subset of cells. Using RNAseq and a suite of biosensors to track single-cell fates both in vitro and in vivo, we identified that early S phase cells have a greater ability to maintain proliferative capacity, which correlated with reduced DNA damage over multiple generations. In contrast, cells in G1, late S or those treated with PARP/RAD51 inhibitors, maintained higher levels of DNA damage and underwent prolonged S/G2 phase arrest and senescence. Combined with our previous work, these data indicate that there is a non-genetic mechanism of resistance in human lung adenocarcinoma that is dependent on the cell cycle stage at the time of cisplatin exposure.
Collapse
Affiliation(s)
- Alvaro Gonzalez Rajal
- ANZAC Research Institute, Concord Hospital, Concord, Australia.,Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia
| | - Kamila A Marzec
- ANZAC Research Institute, Concord Hospital, Concord, Australia
| | - Rachael A McCloy
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Max Nobis
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Venessa Chin
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Hospital Sydney, Darlinghurst, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Kaitao Lai
- ANZAC Research Institute, Concord Hospital, Concord, Australia.,The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, Australia
| | - Marina Kennerson
- ANZAC Research Institute, Concord Hospital, Concord, Australia.,The University of Sydney Concord Clinical School, Faculty of Medicine and Health, Sydney, Australia
| | - William E Hughes
- Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,Children's Medical Research Institute, The University of Sydney, Westmead, Australia
| | | | - Paul Timpson
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Canada.,Department of Internal Medicine, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - David R Croucher
- St Vincent's Hospital Clinical School, University of New South Wales, Sydney, Australia.,The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
| | - Andrew Burgess
- ANZAC Research Institute, Concord Hospital, Concord, Australia
| |
Collapse
|
7
|
Prince GMSH, Yang TY, Lin H, Chen MC. Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth. CHINESE J PHYSIOL 2019; 62:231-240. [PMID: 31793458 DOI: 10.4103/cjp.cjp_67_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lung harbors the growth of primary and secondary tumors. Even though numerous factors regulate the complex signal transduction and cytoskeletal remodeling toward the progression of lung cancer, cyclin-dependent kinase 5 (Cdk5), a previously known kinase in the central nervous system, has raised much attention in the recent years. Patients with aberrant Cdk5 expression also lead to poor survival. Cdk5 has already been employed in various cellular processes which shape the fate of cancer. In lung cancer, Cdk5 mainly regulates tumor suppressor genes, carcinogenesis, cytoskeletal remodeling, and immune checkpoints. Inhibiting Cdk5 by using drugs, siRNA or CRISP-Cas9 system has rendered crucial therapeutic advantage in the combat against lung cancer. Thus, the relation of Cdk5 to lung cancer needs to be addressed in detail. In this review, we will discuss various cellular events modulated by Cdk5 and we will go further into their underlying mechanism in lung cancer.
Collapse
Affiliation(s)
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ho Lin
- Department of Life Sciences; Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Nursing, Asia University; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Wijayatunga RAM. Foreword: message from the Editor. Lung Cancer Manag 2016; 5:155-157. [PMID: 30643559 PMCID: PMC6310321 DOI: 10.2217/lmt-2017-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|