1
|
Ben-Eltriki M, Gayle EJ, Paras JM, Nyame-Addo L, Chhabra M, Deb S. Vitamin D in Melanoma: Potential Role of Cytochrome P450 Enzymes. Life (Basel) 2024; 14:510. [PMID: 38672780 PMCID: PMC11050855 DOI: 10.3390/life14040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Vitamin D is a promising anticancer agent for the prevention and treatment of several cancers, including melanoma. Low 25-hydroxyvitamin D levels, a routinely used marker for vitamin D, have been suggested as one of the factors in the development and progression of melanoma. The parent vitamin D needs activation by cytochrome P450 (CYP) enzymes to exert its actions via the vitamin D receptor (VDR). This review discusses the role of vitamin D in melanoma and how CYP-mediated metabolism can potentially affect the actions of vitamin D. Through interacting with the retinoid X receptor, VDR signaling leads to anti-inflammatory, antioxidative, and anticancer actions. Calcitriol, the dihydroxylated form of vitamin D3, is the most active and potent ligand of VDR. CYP27A1, CYP27B1, and CYP2R1 are involved in the activation of vitamin D, whereas CYP24A1 and CYP3A4 are responsible for the degradation of the active vitamin D. CYP24A1, the primary catabolic enzyme of calcitriol, is overexpressed in melanoma tissues and cells. Several drug classes and natural health products can modulate vitamin D-related CYP enzymes and eventually cause lower levels of vitamin D and its active metabolites in tissues. Although the role of vitamin D in the development of melanoma is yet to be fully elucidated, it has been proposed that melanoma prevention may be significantly aided by increased vitamin D signaling. Furthermore, selective targeting of the catabolic enzymes responsible for vitamin D degradation could be a plausible strategy in melanoma therapy. Vitamin D signaling can be improved by utilizing dietary supplements or by modulating CYP metabolism. A positive association exists between the intake of vitamin D supplements and improved prognosis for melanoma patients. Further investigation is required to determine the function of vitamin D supplementation and specific enzyme targeting in the prevention of melanoma.
Collapse
Affiliation(s)
- Mohamed Ben-Eltriki
- Clinical Pharmacology Lab, Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
- Cochrane Hypertension Review Group, Therapeutic Initiative, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Erysa J. Gayle
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Jhoanne M. Paras
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Louisa Nyame-Addo
- College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA; (E.J.G.); (J.M.P.)
| | - Manik Chhabra
- Clinical Pharmacology Lab, Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Subrata Deb
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA
| |
Collapse
|
2
|
Piotrowska A, Zaucha R, Król O, Żmijewski MA. Vitamin D Modulates the Response of Patient-Derived Metastatic Melanoma Cells to Anticancer Drugs. Int J Mol Sci 2023; 24:ijms24098037. [PMID: 37175742 PMCID: PMC10178305 DOI: 10.3390/ijms24098037] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is considered a lethal and treatment-resistant skin cancer with a high risk of recurrence, making it a major clinical challenge. Our earlier studies documented that 1,25(OH)2D3 and its low-calcaemic analogues potentiate the effectiveness of dacarbazine and cediranib, a pan-VEGFR inhibitor. In the current study, a set of patient-derived melanoma cultures was established and characterised as a preclinical model of human melanoma. Thus, patient-derived cells were preconditioned with 1,25(OH)2D3 and treated with cediranib or vemurafenib, a BRAF inhibitor, depending on the BRAF mutation status of the patients enrolled in the study. 1,25(OH)2D3 preconditioning exacerbated the inhibition of patient-derived melanoma cell growth and motility in comparison to monotherapy with cediranib. A significant decrease in mitochondrial respiration parameters, such as non-mitochondrial oxygen consumption, basal respiration and ATP-linked respiration, was observed. It seems that 1,25(OH)2D3 preconditioning enhanced cediranib efficacy via the modulation of mitochondrial bioenergetics. Additionally, 1,25(OH)2D3 also decreased the viability and mobility of the BRAF+ patient-derived cells treated with vemurafenib. Interestingly, regardless of the strict selection, cancer-derived fibroblasts (CAFs) became the major fraction of cultured cells over time, suggesting that melanoma growth is dependent on CAFs. In conclusion, the results of our study strongly emphasise that the active form of vitamin D, 1,25(OH)2D3, might be considered as an adjuvant agent in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Renata Zaucha
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Oliwia Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | |
Collapse
|
3
|
Calcitriol and Calcidiol Can Sensitize Melanoma Cells to Low⁻LET Proton Beam Irradiation. Int J Mol Sci 2018; 19:ijms19082236. [PMID: 30065179 PMCID: PMC6122082 DOI: 10.3390/ijms19082236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Proton beam irradiation promises therapeutic utility in the management of uveal melanoma. Calcitriol (1,25(OH)2D3)—the biologically active metabolite of vitamin D3—and its precursor, calcidiol (25(OH)D3), exert pleiotropic effects on melanoma cells. The aim of the study was to evaluate the effect of both calcitriol and calcidiol on melanoma cell proliferation and their response to proton beam irradiation. Three melanoma cell lines (human SKMEL-188 and hamster BHM Ma and BHM Ab), pre-treated with 1,25(OH)2D3 or 25(OH)D3 at graded concentrations (0, 10, 100 nM), were irradiated with 0–5 Gy and then cultured in vitro. Growth curves were determined by counting the cell number every 24 h up to 120 h, which was used to calculate surviving fractions. The obtained survival curves were analysed using two standard models: linear-quadratic and multi-target single hit. Calcitriol inhibited human melanoma proliferation at 10 nM, while only calcidiol inhibited proliferation of hamster lines at 10 and 100 nM doses. Treatment with either 1,25(OH)2D3 or 25(OH)D3 radio sensitized melanoma cells to low doses of proton beam radiation. The strength of the effect increased with the concentration of vitamin D3. Our data suggest that vitamin D3 may be an adjuvant that modifies proton beam efficiency during melanoma therapy.
Collapse
|
4
|
Podgorska E, Sniegocka M, Mycinska M, Trybus W, Trybus E, Kopacz-Bednarska A, Wiechec O, Krzykawska-Serda M, Elas M, Krol T, Urbanska K, Slominski A. Acute hepatologic and nephrologic effects of calcitriol in Syrian golden hamster (Mesocricetus auratus). Acta Biochim Pol 2018; 65:351-358. [PMID: 30148509 DOI: 10.18388/abp.2018_2626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
Abstract
Although vitamin D is included in the group of fat-soluble vitamins, it must be considered as a prohormone. Its active forms, including calcitriol, have pleiotropic effects and play an important role in the regulation of cell proliferation, differentiation and apoptosis, as well as in hormone secretion, and they demonstrate anti-cancer properties. Since calcitriol delivery can be beneficial for the organism, and Syrian golden hamsters represent a unique experimental model, we decided to investigate its toxicity in this species. In this study, we injected calcitriol intraperitoneally at doses 0 (control), 0.180±0.009 µg/kg and 0.717±0.032 µg/kg. Animal behavior was observed for 72 hrs after injection, and afterwards blood, liver and kidneys were collected for post-mortem examination, electron microscopy, and hematology analyses. The highest dose of calcitriol induced a change in animal behavior from calm to aggressive, and the liver surface showed morphological signs of damage. Following injection of calcitriol, ultrastructural changes were also observed in the liver and kidneys, e.g. vacuolization and increased number of mitochondria. There was also a trend for increased serum levels of aspartate aminotransferase (AST), but not of alanine aminotransferase (ALT) or GGTP (gamma-glutamyl transpeptidase). There was no change in Ca, Mg and P levels, as well as in blood morphology between experimental and control groups. These results indicate that calcitriol at 0.717, but not at 0.180 µg/kg, may induce acute damage to the liver and kidneys, without inducing calcemia. We propose that the hepatotoxic effect of calcitriol in hamster constitutes the primary cause of behavioral changes.
Collapse
Affiliation(s)
- Ewa Podgorska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Martyna Sniegocka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Marianna Mycinska
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Wojciech Trybus
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Ewa Trybus
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Anna Kopacz-Bednarska
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Olga Wiechec
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Martyna Krzykawska-Serda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Teodora Krol
- Department of Cell Biology and Electron Microscopy, Institute of Biology, The Jan Kochanowski University, Kielce, Poland
| | - Krystyna Urbanska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Andrzej Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
5
|
Slominski AT, Brożyna AA, Skobowiat C, Zmijewski MA, Kim TK, Janjetovic Z, Oak AS, Jozwicki W, Jetten AM, Mason RS, Elmets C, Li W, Hoffman RM, Tuckey RC. On the role of classical and novel forms of vitamin D in melanoma progression and management. J Steroid Biochem Mol Biol 2018; 177:159-170. [PMID: 28676457 PMCID: PMC5748362 DOI: 10.1016/j.jsbmb.2017.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH)2D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as an adjuvant approach. The presence of multiple hydroxyderivatives of D3 in skin that show anti-melanoma activity in experimental models and which may act on alternative receptors, will be a future consideration when planning which forms of vitamin D to use for melanoma therapy.
Collapse
Affiliation(s)
- Andrzej T Slominski
- Department of Dermatology, Birmingham, AL, 35294, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, Birmingham, AL, 35294, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; VA Medical Center, Birmingham, AL, 35294, USA; Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland.
| | - Anna A Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | | | | | - Tae-Kang Kim
- Department of Dermatology, Birmingham, AL, 35294, USA
| | | | - Allen S Oak
- Department of Dermatology, Birmingham, AL, 35294, USA
| | - Wojciech Jozwicki
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Faculty of Health Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health,Research Triangle Park, NC 27709, United States
| | - Rebecca S Mason
- Bosch Institute & School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Craig Elmets
- Department of Dermatology, Birmingham, AL, 35294, USA
| | - We Li
- Department of Pharmaceutical Sciences, University of Tennessee HSC, Memphis, TN 38163, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Skobowiat C, Oak ASW, Kim TK, Yang CH, Pfeffer LM, Tuckey RC, Slominski AT. Noncalcemic 20-hydroxyvitamin D3 inhibits human melanoma growth in in vitro and in vivo models. Oncotarget 2018; 8:9823-9834. [PMID: 28039464 PMCID: PMC5354773 DOI: 10.18632/oncotarget.14193] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
A novel pathway of vitamin D3 (D3) metabolism, initiated by C20-hydroxylation of D3 by CYP11A1, has been confirmed to operate in vivo. Its major product, 20(OH)D3, exhibits antiproliferative activity in vitro comparable to that of 1,25(OH)2D3, but is noncalcemic in mice and rats. To further characterize the antimelanoma activity of 20(OH)D3, we tested its effect on colony formation of human melanoma cells in monolayer culture and anchorage-independent growth in soft agar. The migratory capabilities of the cells and cell-cell and cell-extracellular matrix interactions were also evaluated using transwell cell migration and spheroid toxicity assays. To assess the antimelanoma activity of 20(OH)D3in vivo, age-matched immunocompromised mice were subcutaneously implanted with luciferase-labelled SKMel-188 cells and were randomly assigned to be treated with either 20(OH)D3 or vehicle (n=10 per group). Tumor size was measured with caliper and live bioimaging methods, and overall health condition expressed as a total body score scale. The following results were observed: (i) 20(OH)D3 inhibited colony formation both in monolayer and soft agar conditions, (ii) 20(OH)D3 inhibited melanoma cells in both transwell migration and spheroid toxicity assays, and (iii) 20(OH)D3 inhibited melanoma tumor growth in immunocompromised mice without visible signs of toxicity. However, although the survival rate was 90% in both groups, the total body score was higher in the treatment group compared to control group (2.8 vs. 2.55). In conclusion, 20(OH)D3, an endogenously produced secosteroid, is an excellent candidate for further preclinical testing as an antimelanoma agent.
Collapse
Affiliation(s)
- Cezary Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, AL, USA.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Torun, Poland
| | - Allen S W Oak
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, AL, USA
| | - Chuan He Yang
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, and the Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert C Tuckey
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, Australia
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, AL, USA.,Laboratory Service of the VA Medical Center, Birmingham, AL, USA.,Comprehensive Cancer Center Cancer Chemoprevention Program, University of Alabama at Birmingham, AL, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
7
|
Paolino G, Moliterni E, Corsetti P, Didona D, Bottoni U, Calvieri S, Mattozzi C. Vitamin D and melanoma: state of the art and possible therapeutic uses. GIORN ITAL DERMAT V 2017; 154:64-71. [PMID: 29249122 DOI: 10.23736/s0392-0488.17.05801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Despite the presence of several studies in literature, the real connection between vitamin D serological levels, vitamin D receptor and melanoma remains unclear, probably because of the complex correlation between vitamin D and melanoma. Indeed, UV radiations are not reported as the main risk factor for melanoma in non-sun-exposed, while systemic immunosuppression, anatomical and physiological features may contribute to malignancy. Therefore, the correlation between melanoma cells in sun-exposed areas and vitamin D, as well as vitamin D receptor could be different from the one in melanoma of sun-shielded sites. These differences may also explain the controversial results reported in the literature regarding the correlation between melanoma and vitamin D, as well as the different outcomes in melanoma patients treated with vitamin D as adjuvant therapy. The aim of this review is to highlight the most recent findings about vitamin D and melanoma, focusing on the anatomic site of the primary tumor as well as on the possible therapeutic uses of vitamin D in melanoma patients.
Collapse
Affiliation(s)
| | | | | | - Dario Didona
- Division of Dermatology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Ugo Bottoni
- Department of Dermatology, Magna Grecia University, Catanzaro, Italy
| | | | | |
Collapse
|
8
|
Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. J Transl Med 2017; 97:706-724. [PMID: 28218743 PMCID: PMC5446295 DOI: 10.1038/labinvest.2017.3] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin which supplies >90% of the body's requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases (CYP2R1 or CYP27A1) and 1α-hydroxylase (CYP27B1) to produce 1,25(OH)2D3, or through the action of CYP11A1 to produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1. The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage. These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently demonstrated through action on retinoic acid orphan receptors (ROR)α and RORγ. With respect to melanoma, low levels of 25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(OH)2D3, can activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation has been found between the levels of RORα and RORγ expression and melanoma progression and disease outcome. Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into consideration when applying vitamin D management for melanoma therapy.
Collapse
|