1
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Ghiasian M, Rastgoo Haghi A, Borzouei S, Bawand R. Simultaneous onset of Crohn's disease and Psoriasis in a Multiple Sclerosis patient treated with Teriflunomide: A novel case report highlighting potential autoimmune interactions. Heliyon 2024; 10:e26195. [PMID: 38375254 PMCID: PMC10875582 DOI: 10.1016/j.heliyon.2024.e26195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Teriflunomide (TFN) is an oral Disease-modifying therapy (DMT) widely used in the treatment of relapsing forms of Multiple Sclerosis (MS). Although TFN has demonstrated efficacy in reducing MS activity, recent evidence suggests a possible association between TFN and the onset of rare and severe medical conditions. We present a novel case report of a 47-year-old woman with a history of MS who developed concurrent Crohn's disease and Psoriasis following TFN treatment. This unique occurrence has not been previously documented in the literature. The patient experienced gastrointestinal symptoms and changes in nail color while on TFN. Colonoscopy and biopsy revealed crypt architectural distortion and lamina propria expansion, indicative of Crohn's disease, while dermatological evaluation suggested Psoriasis. Consequently, TFN was discontinued and switched to alternative therapy (Glatiramer acetate), and the patient underwent close observation and regular evaluations. Three months after stopping the TFN, the patient's nail lesions disappeared completely, her abdominal pain and diarrhea were resolved, and the follow-up colonoscopy was completely normal. In this regard, the association between MS, Inflammatory Bowel Disease (IBD), and Psoriasis has been reported in previous studies, with potential involvement of Th17 and IL-17 pathways. Although gastrointestinal side effects with TFN use are typically mild and transient, rare cases of TFN-induced IBD have been reported. Dermatological disorders, including Psoriasis, have also been linked to TFN use, with similarities to our case report. Further research and awareness are warranted to better understand the potential side effects and long-term implications of TFN in the management of MS.
Collapse
Affiliation(s)
- Masoud Ghiasian
- Department of Neuroimmunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Alireza Rastgoo Haghi
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Shiva Borzouei
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Rashed Bawand
- Department of General Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| |
Collapse
|
3
|
Ketabforoush AHME, Tajik A, Habibi MA, Khoshsirat NA. Acute Ischemic Stroke in a Patient with Multiple Sclerosis after Initiating Teriflunomide Treatment: A Challenging Case. CURRENT THERAPEUTIC RESEARCH 2024; 100:100732. [PMID: 38404915 PMCID: PMC10884338 DOI: 10.1016/j.curtheres.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Multiple sclerosis is an autoimmune disease of the central nervous system, during which vascular events, including atherosclerosis, are more common and progress faster. Teriflunomide (TFN) is an oral drug that studies have indicated has low side effects alongside high efficiency. In this article, a middle-aged woman with multiple sclerosis was introduced, whose medication was changed to TFN. Thirty-five days later, she presented with focal neurologic symptoms, and investigations reported a lacunar infarction. Having excluded potential causes of acute ischemic stroke, such as vascular and rheumatologic factors, the only identifiable factor was the introduction of a new medication. The process of conclusively attributing TFN as the causative agent requires further clarification in future studies.
Collapse
Affiliation(s)
| | - Armin Tajik
- Research Students Committee, Alborz University of Medical Sciences, Alborz, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Nahid Abbasi Khoshsirat
- Department of Neurology, Clinical Research Development Unit of Shahid Rajaei Hospital, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
4
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
5
|
Rispoli MG, D'Apolito M, Pozzilli V, Tomassini V. Lessons from immunotherapies in multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:293-311. [PMID: 36803817 DOI: 10.1016/b978-0-323-85555-6.00013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The improved understanding of multiple sclerosis (MS) neurobiology alongside the development of novel markers of disease will allow precision medicine to be applied to MS patients, bringing the promise of improved care. Combinations of clinical and paraclinical data are currently used for diagnosis and prognosis. The addition of advanced magnetic resonance imaging and biofluid markers has been strongly encouraged, since classifying patients according to the underlying biology will improve monitoring and treatment strategies. For example, silent progression seems to contribute significantly more than relapses to overall disability accumulation, but currently approved treatments for MS act mainly on neuroinflammation and offer only a partial protection against neurodegeneration. Further research, involving traditional and adaptive trial designs, should strive to halt, repair or protect against central nervous system damage. To personalize new treatments, their selectivity, tolerability, ease of administration, and safety must be considered, while to personalize treatment approaches, patient preferences, risk-aversion, and lifestyle must be factored in, and patient feedback used to indicate real-world treatment efficacy. The use of biosensors and machine-learning approaches to integrate biological, anatomical, and physiological parameters will take personalized medicine a step closer toward the patient's virtual twin, in which treatments can be tried before they are applied.
Collapse
Affiliation(s)
- Marianna G Rispoli
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy
| | - Maria D'Apolito
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy
| | - Valeria Pozzilli
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB) and Department of Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, SS. Annunziata University Hospital, Chieti, Italy.
| |
Collapse
|
6
|
Zmira O, Gofrit SG, Aharoni SA, Weiss R, Shavit-Stein E, Chapman J. Teriflunomide normalizes anti-anxiety effect in anti-ANXA2 APS mice model teriflunomide in anti-ANXA2 mice model. Lupus 2022; 31:855-863. [PMID: 35575144 DOI: 10.1177/09612033221095150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antiphospholipid syndrome (APS) affects the brain by both hypercoagulation and immunological mechanisms. APS is characterized by several autoantibodies binding to a thrombolytic complex including beta-2-glycoprotein I (β2-GPI) and annexin A2 (ANXA2). Teriflunomide, an oral drug for the treatment of multiple sclerosis (MS), has a cytostatic effect on B cells and is therefore a potential antibody-targeting treatment for APS. In this study, we assessed the effect of teriflunomide in two APS mouse models by inducing autoantibody formation against β2-GPI and ANXA2 in female BALB/c mice. The ANXA2 model displayed a behavioral change suggesting an anti-anxiety effect in open field and forced swim tests, early in the course of the disease. This effect was normalized following teriflunomide treatment. Conversely, behavioral tests done later during the study demonstrated depression-like behavior in the ANXA2 model. No behavioral changes were seen in the β2-GPI model. Total brain IgG levels were significantly elevated in the ANXA2 model but not in the teriflunomide treated group. No such change was noted in the brains of the β2-GPI model. High levels of serum autoantibodies were induced in both models, and their levels were not lowered by teriflunomide treatment. Teriflunomide ameliorated behavioral changes in mice immunized with ANXA2 without a concomitant change in serum antibody levels. These findings are compatible with the effect of teriflunomide on neuroinflammation.Teriflunomide ameliorated behavioral and brain IgG levels in mice immunized with ANXA2 without a concomitant change in serum antibody levels. These findings are compatible with an effect of teriflunomide on the IgG permeability to the brain and neuroinflammation.
Collapse
Affiliation(s)
- Ofir Zmira
- Department of Neurology, 26744Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shany Guly Gofrit
- Department of Neurology, 26744Sheba Medical Center, Ramat Gan, Israel
| | - Shay Anat Aharoni
- Department of Neurology, 26744Sheba Medical Center, Ramat Gan, Israel
| | - Ronen Weiss
- Department of Neurology, 26744Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Joseph Sagol Neuroscience Center, 26744Sheba Medical Center, Tel HaShomer, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, 26744Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Joseph Sagol Neuroscience Center, 26744Sheba Medical Center, Tel HaShomer, Israel.,The TELEM Rubin Excellence in Biomedical Research Program, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Joab Chapman
- Department of Neurology, 26744Sheba Medical Center, Ramat Gan, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Joseph Sagol Neuroscience Center, 26744Sheba Medical Center, Tel HaShomer, Israel.,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Real-World Evidence for Favourable Quality-of-Life Outcomes in Hungarian Patients with Relapsing-Remitting Multiple Sclerosis Treated for Two Years with Oral Teriflunomide: Results of the Teri-REAL Study. Pharmaceuticals (Basel) 2022; 15:ph15050598. [PMID: 35631424 PMCID: PMC9145304 DOI: 10.3390/ph15050598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Relapsing-remitting multiple sclerosis (RRMS) is a degenerative, inflammatory disease of the central nervous system in which symptoms and disability progression vary significantly among patients. Teri-REAL was a prospective, real-world observational study that examined quality-of-life (QoL) and treatment outcomes in a Hungarian cohort of RRMS patients treated with once-daily oral teriflunomide. QoL was assessed at baseline, 12, and 24 months with the Multiple Sclerosis Quality of Life-54 (MSQoL-54) questionnaire. Other measurements included disease progression (Patient Determined Disease Steps [PDDS]), clinical efficacy (relapses), fatigue (Fatigue Impact Scale [FIS]), depression (Beck Depression Inventory [BDI]), cognition (Brief International Cognitive Assessment in MS [BICAMS]), persistence and safety. 212 patients were enrolled (69.1% female, 50.5% treatment naïve), with 146 (69%) completing the study. Statistically significant improvements in subscales of the MSQoL-54 versus baseline were found at Month 12 and Month 24. Significant improvements were also observed for individual components of the BICAMS score at 24 months, while PDDS, FIS and BDI scores remained stable. The mean annualised relapse rate was 0.08 ± 0.32. There were 93 safety events, most of which were mild to moderate. Improved QoL and cognitive outcomes in teriflunomide-treated patients over 2 years offer a unique perspective to this real-world study.
Collapse
|
8
|
Hestvik ALK, Frederiksen JL, Nielsen HH, Torkildsen Ø, Eek C, Huang-Link Y, Haghighi S, Tsai JA, Kant M. Real-World Study of Relapsing-Remitting Multiple Sclerosis Patients Treated with Teriflunomide in Nordic Countries: Quality-Of-Life, Efficacy, Safety and Adherence Outcomes. Mult Scler Relat Disord 2022; 63:103892. [DOI: 10.1016/j.msard.2022.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
9
|
Kong X, Wang J, Cao Y, Lu X, Zhang H, Zhang X, Bo C, Bai M, Li S, Jiao Y, Wang L. Construction of miRNA-regulated drug-pathway network to screen drug repurposing candidates for multiple sclerosis. Medicine (Baltimore) 2022; 101:e29107. [PMID: 35356949 PMCID: PMC10684250 DOI: 10.1097/md.0000000000029107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT Given the high disability rate of multiple sclerosis (MS), there is a need for safer and more effective therapeutic agents. Existing literature highlights the prominent roles of miRNA in MS pathophysiology. Nevertheless, there are few studies that have explored the usefulness of existing drugs in treating MS through potential miRNA-modulating abilities.The current investigation identifies genes that may exacerbate the risk of MS due to their respective miRNA associations. These findings were then used to determine potential drug candidates through the construction of miRNA-regulated drug-pathway network through genes. We uncovered a total of 48 MS risk pathways, 133 MS risk miRNAs, and 186 drugs that can affect these pathways. Potential MS risk miRNAs that are also regulated by therapeutic candidates were hsa05215 and hsa05152. We analyzed the properties of the miRNA-regulated drug-pathway network through genes and uncovered a number of novel MS agents by assessing their respective Z-values.A total of 20 likely drug candidates were identified, including human immunoglobulin, aspirin, alemtuzumab, minocycline, abciximab, alefacept, palivizumab, bevacizumab, efalizumab, tositumomab, minocycline, etanercept, catumaxomab, and sarilumab. Each of these agents were then explored with regards to their likely mechanism of action in treating MS.The current investigation provides a fresh perspective on MS biological mechanisms as well as likely treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lihua Wang
- Correspondence: Lihua Wang, Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150086, Heilongjiang Province, China(e-mail: ).
| |
Collapse
|
10
|
Toufic El Hussein M, Wong A. Using Mnemonic in Management of Multiple Sclerosis. J Neurosci Nurs 2022; 54:48-51. [PMID: 35007262 DOI: 10.1097/jnn.0000000000000626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ABSTRACT BACKGROUND: Multiple sclerosis (MS) is a disease involving demyelination of the central nervous system. Medication management in MS is a vital step in preventing further disease progression. OBJECTIVE: This article presents healthcare providers with an aide-mémoire in the form of a mnemonic to assist in the medication management of MS. METHODS: We explored recent guidelines, systematic reviews, and randomized controlled trials using PubMed, MEDLINE, and CINAHL to analyze the role and efficacy of pharmacotherapy in relapse prevention of MS. CONCLUSION: It is crucial to consider the classifications of MS and its pathophysiology to determine which medication produces the best results. Our proposed mnemonic can support a clinician's recall ability and assist in identifying the respective MS medication.
Collapse
|
11
|
Miller AE. An updated review of teriflunomide's use in multiple sclerosis. Neurodegener Dis Manag 2021; 11:387-409. [PMID: 34486382 DOI: 10.2217/nmt-2021-0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Teriflunomide, a once daily, oral disease-modifying therapy, has demonstrated consistent efficacy, safety and tolerability in patients with relapsing forms of multiple sclerosis (MS) and with a first clinical episode suggestive of MS treated up to 12 years. This review is an update to a previous version that examined data from the teriflunomide core clinical development program and extension studies. Data have since become available from active comparator trials with other disease-modifying therapies, treatment-related changes in brain volume (analyzed using structural image evaluation using normalization of atrophy) and real-world evidence including patient-reported outcomes. Initial data on the potential antiviral effects of teriflunomide in patients with MS, including case reports of patients infected with the 2019 novel coronavirus (SARS-CoV-2), are also presented.
Collapse
Affiliation(s)
- Aaron E Miller
- Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| |
Collapse
|
12
|
Merusomayajula KV, Rao TS, Srinivas KR, Sathyendranath CV. Quantitative determination of cyanoacetic acid content in teriflunomide drug substance by ion chromatography using conductivity detector. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The current study focuses on the development and validation of an analytical method for quantifying cyanoacetic acid (CAA) in teriflunomide drug substance using a high-performance ion chromatography (IC) with cation suppressed conductivity detection (TFM). Water was used as the diluent for preparing the sample solution, which was injected into a standard chromatographic device with 250 mm, 4.0 mm ID, and 5.0 μm particle size Metrosep A Supp 5 Ion exchange column and a suppressed conductivity detector. At a flow rate of 0.6 mL min−1 and a temperature of 40 °C, the mobile phase was delivered in an isocratic mode.
Results
CAA and TFM had retention times of 12.78 and 15.82 min, respectively. CAA has a limit of detection (LOD) of 33 μg/g and a limit of quantification (LOQ) of 101 μg/g, respectively. For LOD and LOQ accuracy, the percentage RSD of CAA is 1.7 and 1.2, respectively. The average CAA recovery percentage was found to be between 98.6 and 100.1%. With a value of 0.9998, the calibration curve yielded an excellent linear correlation coefficient for CAA. According to the ICH guidelines, all verification parameters are within the range, indicating that the system is stable.
Conclusion
The elution time and run time in the currently developed ion chromatography analytical method have been reduced, demonstrating that the method is cost-effective and generally accepted, as well as simple and functional, and can be used in routine quality control tests in the industry.
Collapse
|
13
|
Choudhary R, Ashraf R, Thakur V, Kumaran MS. Teriflunomide-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. Clin Exp Dermatol 2020; 46:166-169. [PMID: 32557734 DOI: 10.1111/ced.14339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- R Choudhary
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - R Ashraf
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - V Thakur
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - M S Kumaran
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
What are the infectious risks with disease-modifying drugs for multiple sclerosis and how to reduce them? A review of literature. Rev Neurol (Paris) 2020; 176:235-243. [DOI: 10.1016/j.neurol.2019.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 08/05/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022]
|
15
|
Gross RH, Corboy JR. Monitoring, Switching, and Stopping Multiple Sclerosis Disease-Modifying Therapies. Continuum (Minneap Minn) 2019; 25:715-735. [PMID: 31162313 DOI: 10.1212/con.0000000000000738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This article reviews appropriate monitoring of the various multiple sclerosis (MS) disease-modifying therapies, summarizes the reasons patients switch or stop treatment, and provides a framework for making these management decisions. RECENT FINDINGS With the increasing number of highly effective immunotherapies available for MS, the possibility of better control of the disease has increased, but with it, the potential for side effects has rendered treatment decisions more complicated. Starting treatment early with more effective and better-tolerated disease-modifying therapies reduces the likelihood of switching because of breakthrough disease or lack of compliance. Clinical and radiographic surveillance, and often blood and other paraclinical tests, should be performed periodically, depending on the disease-modifying therapy. Helping patients navigate the uncertainty around switching or stopping treatment, either temporarily or permanently, is one of the most important things we do as providers of MS care. SUMMARY Ongoing monitoring of drug therapy is a crucial component of long-term MS care. Switching treatments may be necessary for a variety of reasons. Permanent discontinuation of treatment may be appropriate for some patients with MS, although more study is needed in this area.
Collapse
|
16
|
Dormer L. Introducing volume 8 of Neurodegenerative Disease Management. Neurodegener Dis Manag 2019; 8:1-4. [PMID: 29400629 DOI: 10.2217/nmt-2017-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Welcome to the eighth volume of Neurodegenerative Disease Management. At the start of a new volume, it is interesting to look back at which content proved most popular in 2017, and also to take a look forward to the content of this issue and beyond.
Collapse
Affiliation(s)
- Laura Dormer
- Future Medicine Ltd, Unitec House, London N3 1QB, UK
| |
Collapse
|
17
|
Martin S, Chiramel AI, Schmidt ML, Chen YC, Whitt N, Watt A, Dunham EC, Shifflett K, Traeger S, Leske A, Buehler E, Martellaro C, Brandt J, Wendt L, Müller A, Peitsch S, Best SM, Stech J, Finke S, Römer-Oberdörfer A, Groseth A, Feldmann H, Hoenen T. A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Med 2018; 10:58. [PMID: 30081931 PMCID: PMC6090742 DOI: 10.1186/s13073-018-0570-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background The 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Approaches targeting host factors/pathways essential for the virus are advantageous because they can potentially target a wide range of viruses, including newly emerging ones and because the development of resistance is less likely than when targeting the virus directly. However, systematic approaches for screening host factors important for EBOV have been hampered by the necessity to work with this virus at biosafety level 4 (BSL4). Methods In order to identify host factors involved in the EBOV life cycle, we performed a genome-wide siRNA screen comprising 64,755 individual siRNAs against 21,566 human genes to assess their activity in EBOV genome replication and transcription. As a screening platform, we used reverse genetics-based life cycle modelling systems that recapitulate these processes without the need for a BSL4 laboratory. Results Among others, we identified the de novo pyrimidine synthesis pathway as an essential host pathway for EBOV genome replication and transcription, and confirmed this using infectious EBOV under BSL4 conditions. An FDA-approved drug targeting this pathway showed antiviral activity against infectious EBOV, as well as other non-segmented negative-sense RNA viruses. Conclusions This study provides a minable data set for every human gene regarding its role in EBOV genome replication and transcription, shows that an FDA-approved drug targeting one of the identified pathways is highly efficacious in vitro, and demonstrates the power of life cycle modelling systems for conducting genome-wide host factor screens for BSL4 viruses. Electronic supplementary material The online version of this article (10.1186/s13073-018-0570-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA.,Present address: Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Marie Luisa Schmidt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Nadia Whitt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Ari Watt
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Eric C Dunham
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Shelby Traeger
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Anne Leske
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Eugen Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Janine Brandt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Andreas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stephanie Peitsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sonja M Best
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Allison Groseth
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA.,Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Thomas Hoenen
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA. .,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
18
|
Groh J, Hörner M, Martini R. Teriflunomide attenuates neuroinflammation-related neural damage in mice carrying human PLP1 mutations. J Neuroinflammation 2018; 15:194. [PMID: 29970109 PMCID: PMC6031103 DOI: 10.1186/s12974-018-1228-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetically caused neurological disorders of the central nervous system (CNS) are mostly characterized by poor or even fatal clinical outcome and few or no causative treatments are available. Often, these disorders are associated with low-grade, disease-promoting inflammation, another feature shared by progressive forms of multiple sclerosis (PMS). We previously generated two mouse lines carrying distinct mutations in the oligodendrocytic PLP1 gene that have initially been identified in patients diagnosed with MS. These mutations cause a loss of PLP function leading to a histopathological and clinical phenotype common to both PMS and genetic CNS disorders, like hereditary spastic paraplegias. Importantly, neuroinflammation promotes disease progression in these models, suggesting that pharmacological modulation of inflammation might ameliorate disease outcome. METHODS We applied teriflunomide, an approved medication for relapsing-remitting MS targeting activated T-lymphocytes, in the drinking water (10 mg/kg body weight/day). Experimental long-term treatment of PLP mutant mice was non-invasively monitored by longitudinal optical coherence tomography and by rotarod analysis. Immunomodulatory effects were subsequently analyzed by flow cytometry and immunohistochemistry and treatment effects regarding neural damage, and neurodegeneration were assessed by histology and immunohistochemistry. RESULTS Preventive treatment with teriflunomide attenuated the increase in number of CD8+ cytotoxic effector T cells and fostered the proliferation of CD8+ CD122+ PD-1+ regulatory T cells in the CNS. This led to an amelioration of axonopathic features and neuron loss in the retinotectal system, also reflected by reduced thinning of the innermost retinal composite layer in longitudinal studies and ameliorated clinical outcome upon preventive long-term treatment. Treatment of immune-incompetent PLP mutants did not provide evidence for a direct, neuroprotective effect of the medication. When treatment was terminated, no rebound of neuroinflammation occurred and histopathological improvement was preserved for at least 75 days without treatment. After disease onset, teriflunomide halted ongoing axonal perturbation and enabled a recovery of dendritic arborization by surviving ganglion cells. However, neither neuron loss nor clinical features were ameliorated, likely due to already advanced neurodegeneration before treatment onset. CONCLUSIONS We identify teriflunomide as a possible medication not only for PMS but also for inflammation-related genetic diseases of the nervous system for which causal treatment options are presently lacking.
Collapse
Affiliation(s)
- Janos Groh
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany.
| | - Michaela Hörner
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany
| | - Rudolf Martini
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Wuerzburg, D-97080, Wuerzburg, Germany.
| |
Collapse
|
19
|
Celius EG. Infections in patients with multiple sclerosis: Implications for disease-modifying therapy. Acta Neurol Scand 2017; 136 Suppl 201:34-36. [PMID: 29068490 DOI: 10.1111/ane.12835] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/27/2022]
Abstract
Patients with multiple sclerosis have an increased risk of infections compared to the general population. The increased risk has been described for decades and is not alone attributed to the use of disease-modifying drugs, but secondary to the disability. The introduction of more potent immunomodulatory drugs may cause an additional challenge, and depending on the mechanism of action, a treatment-induced increased risk of bacterial, viral, fungal or parasitic infections is observed. The choice of treatment in the individual patient with infections and multiple sclerosis must be guided by the drugs' specific mechanism of action, the drug-specific risk of infection and comorbidities. Increased monitoring and follow-up through treatment registries is warranted to increase our understanding and thereby improve management.
Collapse
Affiliation(s)
- E. G. Celius
- Department of Neurology; Oslo University Hospital; Oslo Norway
- Faculty of Medicine; Institute of Health and Society; University of Oslo; Oslo Norway
| |
Collapse
|
20
|
Gordon-Lipkin E, Banwell B. An update on multiple sclerosis in children: diagnosis, therapies, and prospects for the future. Expert Rev Clin Immunol 2017; 13:975-989. [PMID: 28738749 DOI: 10.1080/1744666x.2017.1360135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system, is increasingly being recognized in children and adolescents. Pediatric MS follows a relapsing-remitting course at onset, with a risk for early cognitive impairment. Areas covered: In this review, we discuss the clinical features of acute demyelinating syndromes in children and risk factors that increase the likelihood of a diagnosis of MS. We also address the application of diagnostic criteria for MS in children, immunological features, therapeutic options and psychosocial considerations for children and adolescents with MS. Expert commentary: Collaborative multicenter clinical trials and research efforts are key to the advancement in understanding the pathophysiology and therapeutic strategies for multiple sclerosis across the lifespan.
Collapse
Affiliation(s)
- Eliza Gordon-Lipkin
- a Department of Neurology and Developmental Medicine , Kennedy Krieger Institute and Johns Hopkins School of Medicine , Baltimore , MD , USA
| | - Brenda Banwell
- b Children's Hospital of Philadelphia , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
21
|
Dormer L. Introducing a new volume of Neurodegenerative Disease Management. Neurodegener Dis Manag 2017; 7:1-4. [PMID: 28128039 DOI: 10.2217/nmt-2016-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Laura Dormer
- Commissioning Editor, Neurodegenerative Disease Management, Future Medicine Ltd, Unitec House, London, N3 1QB, UK
| |
Collapse
|